[d5c425]: / main.py

Download this file

313 lines (239 with data), 11.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import torch
import pickle
import numpy as np
import torch.backends.cudnn as cudnn
from torch.utils.data.dataloader import DataLoader
from sklearn.model_selection import StratifiedKFold, train_test_split
from tqdm.auto import tqdm
# from torchviz import make_dot
from losses import MultiTaskLoss, CoxLoss
from datasets import RadDataset
from models import FusionModelBi, Model
from utils import *
from parameters import parse_args
import scipy.io
import time as timetime
# from monai.networks.nets import DenseNet121,HighResNet,SEResNext50
import matplotlib.pyplot as plt
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
def one_epoch(args, split, model, optim, loader, criterion):
if split == "train":
model.train()
else:
model.eval()
total = 0
sum_loss = 0
all_preds_grade = []
all_preds_hazard = []
all_grade = []
all_time = []
all_event = []
all_ID = []
device = 'cuda:0'
for i, (mod1, mod2, grade, time, event, ID) in enumerate(loader):
if i%1==0:
print(f"Sample {i}/{len(loader)}")
# Display the four samples for each region. Just run it for a single batch and then exit the run to look at the saved images
# PT_image, LN_image = mod1[0], mod2[0]
# print("saving patient", ID[0], "to folder")
# for i in range(4):
# plt.imsave(os.path.join(args.savedir, str(i)+"_PT.png"), PT_image[i,0,:,:])
# plt.imsave(os.path.join(args.savedir, str(i)+"_LN.png"), LN_image[i,0,:,:])
# print("-----------------------")
model = model.to(device)
mod1, mod2, grade, time, event = mod1.to(device), mod2.to(device), grade.to(device), time.to(device), event.to(device)
batch = mod1.shape[0]
pred = model(mod1, mod2)
if args.batch_size==1:
if args.task == "multitask":
pred_grade, pred_hazard = pred
elif args.task == "classification":
pred_grade, pred_hazard = pred[0], torch.empty(1)
elif args.task == "survival":
pred_grade, pred_hazard = torch.empty(1), pred[0]
else:
raise NotImplementedError(
f'task method {args.task} is not implemented')
else:
if args.task == "multitask":
pred_grade, pred_hazard = pred
elif args.task == "classification":
pred_grade, pred_hazard = pred.squeeze(), torch.empty(1)
elif args.task == "survival":
pred_grade, pred_hazard = torch.empty(1), pred.squeeze()
else:
raise NotImplementedError(
f'task method {args.task} is not implemented')
loss_task = criterion(args.task, pred_grade, pred_hazard, grade, time, event)
loss = loss_task
if split == 'train':
optim.zero_grad()
loss.backward()
optim.step()
total += batch
sum_loss += batch * (loss.item())
all_preds_grade.append(pred_grade)
all_preds_hazard.append(pred_hazard)
all_grade.append(grade)
all_time.append(time)
all_event.append(event)
all_ID.append(ID)
all_grade = torch.concat(all_grade)
all_time = torch.concat(all_time)
all_event = torch.concat(all_event)
if args.task == "classification" :
all_preds_grade = torch.concat(all_preds_grade)
return sum_loss / total, (all_preds_grade, None, all_grade, all_time, all_event, all_ID)
elif args.task == "multitask":
all_preds_grade = torch.concat(all_preds_grade)
all_preds_hazard = torch.concat(all_preds_hazard)
return sum_loss / total, (all_preds_grade, all_preds_hazard, all_grade, all_time, all_event, all_ID)
else:
all_preds_hazard = torch.concat(all_preds_hazard)
return sum_loss / total, (None, all_preds_hazard, all_grade, all_time, all_event, all_ID)
def test(args, device):
model_name = args.fusion_type+'_'+args.task+'_'+str(args.n_epochs)+'_'+str(args.lr)
criterion = MultiTaskLoss()
data_test = extract_csv(os.path.join(
args.dataroot, "data_table_test.csv"))
checkpoint = torch.load(os.path.join(args.checkpoints_dir, args.exp_name, model_name, f'{model_name}_best_val_cindex.pt'))
# Create an instance of the model
model = Model(args)
# Extract the 'epoch' from the loaded checkpoint
saved_epoch = checkpoint['epoch']
# Print or use the extracted epoch
print(f"The model is saved on epoch: {saved_epoch}")
# Load the model state from the checkpoint
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
test_set = RadDataset(data_test, args.dataroot, train_flag=False)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, collate_fn=custom_collate)
train_loss = checkpoint['train_loss']
train_preds = checkpoint['train_pred']
val_loss = checkpoint['val_loss']
val_preds = checkpoint['val_pred']
test_loss, test_preds = one_epoch(args, "test", model, None, test_loader, criterion)
ci_train, _ = compute_metrics(args, train_preds)
ci_val, _ = compute_metrics(args, val_preds)
ci_test, _ = compute_metrics(args, test_preds)
print(
f"[Final] Apply model to training set: Loss = {train_loss}, C-Index = {ci_train}")
print(
f"[Final] Apply model to validation set: Loss = {val_loss}, C-Index = {ci_val}")
print(
f"[Final] Apply model to test set: Loss = {test_loss}, C-Index = {ci_test}")
pickle.dump(train_preds, open(os.path.join(args.checkpoints_dir, args.exp_name, model_name, 'pred_train.pkl'), 'wb'))
pickle.dump(val_preds, open(os.path.join(args.checkpoints_dir, args.exp_name, model_name, 'pred_val.pkl'), 'wb'))
pickle.dump(test_preds, open(os.path.join(args.checkpoints_dir, args.exp_name, model_name, 'pred_test.pkl'), 'wb'))
def train_model(args, data_train, data_val, model, criterion, optim, scheduler, device):
model_name = args.fusion_type+'_'+args.task+'_'+str(args.n_epochs)+'_'+str(args.lr)
torch.cuda.manual_seed_all(42)
torch.manual_seed(42)
np.random.seed(42)
train_set = RadDataset(
data_train, args.dataroot)
val_set = RadDataset(data_val, args.dataroot, train_flag=False)
train_loader = DataLoader(
train_set, batch_size=args.batch_size, shuffle=True, collate_fn=custom_collate)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, collate_fn=custom_collate)
metric_logger = {'train': {'loss': [], 'cindex': []},
'val': {'loss': [], 'cindex': []}}
best_val_cindex = float('-inf') # Initialize to negative infinity
# cudnn.deterministic = True
for epoch in tqdm(range(args.epoch_count, args.niter+args.n_epochs+1)):
print(device)
loss, preds = one_epoch(args,
"train", model, optim, train_loader, criterion)
scheduler.step()
vloss, vpreds = one_epoch(args,
"val", model, None, val_loader, criterion)
if epoch % args.print_freq == 0:
print(f"epoch {epoch}")
lr_tmp = get_lr(optim)
print(f"Learning rate in current epoch: {lr_tmp}")
ci_train, _ = compute_metrics(args, preds)
metric_logger['train']['loss'].append(loss)
metric_logger['train']['cindex'].append(ci_train)
print(f"Training loss = {loss}")
print(f"Train C-index (survival) = {ci_train}")
ci_val, _ = compute_metrics(args, vpreds)
metric_logger['val']['loss'].append(vloss)
metric_logger['val']['cindex'].append(ci_val)
print(f"Validation loss = {vloss}")
print(f"Val C-index (survival) = {ci_val}")
if (epoch > 5) and (ci_val > best_val_cindex):
best_val_cindex = ci_val
torch.save({
'args': args,
'epoch': epoch,
'model_state_dict': model.cpu().state_dict(),
'optimizer_state_dict': optim.state_dict(),
'metrics': metric_logger,
'train_loss': loss,
'train_pred': preds,
'val_loss': vloss,
'val_pred': vpreds},
os.path.join(args.checkpoints_dir, args.exp_name, model_name, f'{model_name}_best_val_cindex.pt'))
return model, optim, metric_logger
def train_val(args, device):
criterion = MultiTaskLoss()
data_train = extract_csv(os.path.join(
args.dataroot, "data_table_train.csv"))
data_val = extract_csv(os.path.join(
args.dataroot, "data_table_val.csv"))
# torch.cuda.manual_seed_all(42)
# torch.manual_seed(42)
# np.random.seed(42)
model = Model(args)
model.to(device)
optim = define_optimizer(args, model)
scheduler = define_scheduler(args, optim)
print(model)
print("Number of Trainable Parameters: %d" %
count_parameters(model))
print("Optimizer Type:", args.optimizer_type)
print("Activation Type:", args.act_type)
model, optim, metric_logger = train_model(
args, data_train, data_val, model, criterion, optim, scheduler, device)
return metric_logger
if __name__ == '__main__':
args = parse_args()
root = args.dataroot
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
print("Using device:", device)
torch.cuda.manual_seed_all(42)
torch.manual_seed(42)
np.random.seed(42)
metric_logger = train_val(args, device)
test(args, device)
model_name = args.fusion_type+'_'+args.task+'_'+str(args.n_epochs)+'_'+str(args.lr)
# Save results for train, validation, and test sets
save_results_to_mat("train", args, model_name)
save_results_to_mat("val", args, model_name)
save_results_to_mat("test", args, model_name)
# Plotting
plt.figure(figsize=(12, 6))
# Plotting the training loss
plt.subplot(1, 2, 1)
plt.plot(range(args.epoch_count, args.niter + args.n_epochs + 1),
metric_logger['train']['loss'], label='Train')
plt.plot(range(args.epoch_count, args.niter + args.n_epochs + 1),
metric_logger['val']['loss'], label='Validation')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
# Plotting the training C-index
plt.subplot(1, 2, 2)
plt.plot(range(args.epoch_count, args.niter + args.n_epochs + 1),
metric_logger['train']['cindex'], label='Train')
plt.plot(range(args.epoch_count, args.niter + args.n_epochs + 1),
metric_logger['val']['cindex'], label='Validation')
plt.xlabel('Epoch')
plt.ylabel('C-Index')
plt.title('Training and Validation C-Index')
plt.legend()
# Show the plots
plt.tight_layout()
plt.show()