Diff of /parameters.py [000000] .. [d5c425]

Switch to side-by-side view

--- a
+++ b/parameters.py
@@ -0,0 +1,125 @@
+import argparse
+import os
+import torch
+
+
+def parse_args():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--dataroot', type=str,
+                        default='..\\radiology', help="datasets path")
+    parser.add_argument('--checkpoints_dir', type=str,
+                        default='..\checkpoints', help='models are saved here')
+    parser.add_argument('--savedir', type=str,
+                        default='..\images', help='images are saved here')
+    parser.add_argument('--exp_name', type=str, default='raw_images',
+                        help='name of the project. It decides where to store samples and models')
+
+    parser.add_argument('--gpu_ids', type=str, default='0',
+                        help='gpu ids: e.g. 0,1,2, 0,2. use -1 for CPU')
+    parser.add_argument('--n_epochs', default=50, type=int,
+                        help='number of training epochs')
+    parser.add_argument('--optimizer_type', type=str, default='adam')
+    parser.add_argument('--feature_type', type=str, default='raw')
+    parser.add_argument('--act_type', type=str,
+                        default='relu', help='activation function')
+
+    parser.add_argument('--fusion_type', type=str, default='fused_attention')
+    parser.add_argument('--task', type=str, default='classification')
+    parser.add_argument('--batch_size', default=32, type=int,
+                        help='batch size')
+    parser.add_argument('--hidden_units', default=(64,16), type=tuple,
+                        help='tuple of hidden layers')
+    parser.add_argument('--print_freq', default=1, type=int,
+                        help='frequency of model checkpoint saving')
+    parser.add_argument('--lr', default=0.001, type=float,
+                        help='learning rate')
+    parser.add_argument('--lr_policy', default='constant',
+                        type=str, help='1e-2 for Adam | 1e-3 for AdaBound')
+    parser.add_argument('--dropout', default=0.7, type=float,
+                        help='Drop out')
+    parser.add_argument('--beta1', type=float, default=0.9,
+                        help='0.9, 0.5 | 0.25 | 0')
+    parser.add_argument('--beta2', type=float, default=0.999,
+                        help='0.9, 0.5 | 0.25 | 0')
+    parser.add_argument('--gamma', type=float, default=0.5,
+                        help='weight of the mmo loss relative to Cox loss')
+    parser.add_argument('--weight_decay', default=0, type=float,
+                        help='Used for Adam. L2 Regularization on weights.')
+    parser.add_argument('--niter', type=int, default=0,
+                        help='# of iter at starting learning rate')
+    parser.add_argument('--dim_out', type=int, default=24,
+                        help='final dimension after attention module')
+    parser.add_argument('--feature_size', type=int, default=24,
+                        help='number of input channels for Swin Transformer')
+    parser.add_argument('--epoch_count', type=int,
+                        default=1, help='start of epoch')
+
+    args = parser.parse_args()
+    print_options(parser, args)
+    args = parse_gpuids(args)
+    return args
+
+
+def print_options(parser, args):
+    """Print and save options
+    It will print both current options and default values(if different).
+    It will save options into a text file / [checkpoints_dir] / args.txt
+    """
+    message = ''
+    message += '----------------- Options ---------------\n'
+    for k, v in sorted(vars(args).items()):
+        comment = ''
+        default = parser.get_default(k)
+        if v != default:
+            comment = '\t[default: %s]' % str(default)
+        message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
+    message += '----------------- End -------------------'
+    print(message)
+
+    mkdir(args.savedir) # remove after checking images
+
+    # save to the disk
+    exp_dir = os.path.join(args.checkpoints_dir, args.exp_name)
+    mkdirs(exp_dir)
+    model_dir = os.path.join(exp_dir, args.fusion_type+'_'+args.task+'_'+str(args.n_epochs)+'_'+str(args.lr))
+    mkdirs(model_dir)
+    file_name = os.path.join(model_dir, 'train_opt.txt')
+    with open(file_name, 'wt') as opt_file:
+        opt_file.write(message)
+        opt_file.write('\n')
+
+
+def parse_gpuids(args):
+    # set gpu ids
+    if len(args.gpu_ids) > 0:
+        str_ids = args.gpu_ids.split(',')
+        args.gpu_ids = []
+        for str_id in str_ids:
+            id = int(str_id)
+            if id >= 0:
+                args.gpu_ids.append(id)
+
+        torch.cuda.set_device(args.gpu_ids[0])
+
+    return args
+
+
+def mkdirs(paths):
+    """create empty directories if they don't exist
+    Parameters:
+        paths (str list) -- a list of directory paths
+    """
+    if isinstance(paths, list) and not isinstance(paths, str):
+        for path in paths:
+            mkdir(path)
+    else:
+        mkdir(paths)
+
+
+def mkdir(path):
+    """create a single empty directory if it didn't exist
+    Parameters:
+        path (str) -- a single directory path
+    """
+    if not os.path.exists(path):
+        os.makedirs(path)