[742cad]: / prostate_cancer.py

Download this file

293 lines (221 with data), 12.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from collections import Counter
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import svm
from sklearn.decomposition import PCA, KernelPCA
from sklearn.ensemble import IsolationForest, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.feature_selection import VarianceThreshold
from sklearn.feature_selection import SelectKBest, chi2, mutual_info_classif
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import GaussianNB
from statistics import mean
from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
from imblearn.over_sampling import SMOTE
from imblearn.combine import SMOTEENN
# MODEL = OneVsRestClassifier(svm.SVC(kernel='linear'))
MODEL_LDA = LinearDiscriminantAnalysis()
MODEL_NB = GaussianNB()
MODEL_RF = RandomForestClassifier()
def load_genomic_data(filename):
# load the geneomic data
genomic_df = pd.read_csv(filename)
# Setting index to first column, else it will add its own indexing while doing transpose
genomic_df.set_index('ID', inplace = True)
# Need to take transpose since I want genes/features to be columns and each row should represent a patient information
genomic_df = genomic_df.T
# removing features with only zero values for all patients
return genomic_df.loc[:, (genomic_df != 0).any(axis = 0)]
def read_data(gfilename, cfilename):
# Feature set, load geonomic data
X = load_genomic_data(gfilename)
# load the clinical data
clinical_df = pd.read_csv(cfilename)
print("Shape of genomic data: ", X.shape, " and Shape of clinical data: ", clinical_df.shape, "thus looks like we donot have genetic data for 5 patients, hence removing them")
clinical_df = clinical_df.drop(labels=[213,227,297,371,469], axis=0)
print("After droping 5 patients whose data were missing:\nShape of genomic data: ", X.shape, " and Shape of clinical data: ", clinical_df.shape, "\n")
print("-- Checking if all patient ID's in genetic data set and clinical dataset matches\n")
if(X.index.all() == clinical_df['PATIENT_ID'].all()):
print("-- Yes, patient ID's in genetic data set and clinical dataset matches\n")
else:
print("Nope, patient ID's in genetic data set and clinical dataset do not match")
y = clinical_df['GLEASON_SCORE']
return X, y
def visualize_data(X, y, title):
# Visualizing dataset for outliers, using PCA prioir to LDA to prevent overfitting (https://stats.stackexchange.com/q/109810)
pca = PCA(n_components=10)
pca_reduced_data = pca.fit_transform(X,y)
lda = LinearDiscriminantAnalysis(n_components = 2)
pca_lda_reduced_data = lda.fit_transform(pca_reduced_data, y)
# NOTE: Gleason score ranges from 6-10
label = [6, 7, 8, 9, 10]
colors = ['red','green','blue','purple','pink']
fig = plt.figure(figsize=(6,6))
plt.scatter(pca_lda_reduced_data[:,0], pca_lda_reduced_data[:,1], c=y, cmap=matplotlib.colors.ListedColormap(colors), alpha=0.7)
plt.title(title)
def prepare_inputs(X_train, X_test):
scaler = MinMaxScaler()
X_train_norm = scaler.fit_transform(X_train)
X_test_norm = scaler.transform(X_test)
return X_train_norm, X_test_norm
def remove_low_variance_feature(X):
sel = VarianceThreshold()
return sel.fit_transform(X)
def filter_feature_selection(X_train_norm, y_train, X_test_norm, score_function):
best_k = SelectKBest(score_func=score_function, k=300)
fit = best_k.fit(X_train_norm, y_train)
X_train_fs = fit.transform(X_train_norm)
X_test_fs = fit.transform(X_test_norm)
# DONOT REMOVE
# dfscores = pd.DataFrame(fit.scores_)
# dfcolumns = pd.DataFrame(X_train.columns)
# featureScores = pd.concat([dfcolumns, dfscores], axis=1)
# featureScores.columns = ['Features','Score']
# best = featureScores.nlargest(40,'Score')
# for f in best['Features']:
# featureVoting[f] = featureVoting.get(f, 0) + 1
#best.plot(x='Features', y="Score", kind="bar")
return X_train_fs, X_test_fs
def forward_feature_selecion(X_train_fs, y_train, X_test_fs):
sfs = SFS(MODEL,
k_features=20,
forward=True,
floating = False,
verbose=2,
scoring = 'accuracy',
cv = 5)
fit = sfs.fit(X_train_fs, y_train)
print(fit)
X_train_wfs = fit.transform(X_train_fs)
X_test_wfs = fit.transform(X_test_fs)
best = sfs.k_feature_names_ # to get the final set of features
#print(best)
return X_train_wfs, X_test_wfs
def backward_feature_selection(X_train_fs, y_train, X_test_fs):
sbs = SFS(MODEL,
k_features=20,
forward=False,
floating = False,
verbose=2,
scoring = 'accuracy',
cv = 5)
fit = sfs.fit(X_train_fs, y_train)
#print(fit)
X_train_wfs = fit.transform(X_train_fs)
X_test_wfs = fit.transform(X_test_fs)
best = sbs.k_feature_names_ # to get the final set of features
#print(best)
return X_train_wfs, X_test_wfs
def get_performace_measures(model, X_train, X_test, y_train, y_test, Accuracy_list):
model = OneVsRestClassifier(model).fit(X_train, y_train)
y_pred = model.predict(X_test)
# Accuracy_list.append(accuracy_score(y_test, y_pred))
yT = model.label_binarizer_.transform(y_test).toarray().T
# Iterate through all L classifiers
print("------------------------------")
for i, (classifier, is_ith_class) in enumerate(zip(model.estimators_, yT)):
print("Accuracy of", 6+i, "vs Rest: ", round(classifier.score(X_test, is_ith_class), 4))
Accuracy_list[i] += classifier.score(X_test, is_ith_class)
print('\n\n')
# Currenlty not in use
def dimensionality_reduction(X,y):
pca = KernelPCA(kernel='rbf')
#pca_reduced_data = pca.fit_transform(X,y)
X_transformed = pca.fit_transform(X)
return X_transformed
#lda = LinearDiscriminantAnalysis()
#pca_lda_data = lda.fit_transform(pca_reduced_data,y)
X, y = read_data('prad_tcga_genes.csv', 'prad_tcga_clinical_data.csv')
#Resampling dataset, since our data is imbalanced
sme = SMOTEENN(random_state=42,smote=SMOTE(random_state=42, k_neighbors=1))
X, y = sme.fit_resample(X, y)
print('Resampling of dataset using SMOTEENN %s' % Counter(y), '\n')
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.7, random_state=42)
X_train_norm, X_test_norm = prepare_inputs(X_train, X_test)
#--------------------------------------------------------------#
#Comparative Analysis
#--------------------------------------------------------------#
print('\nLDA Classification\n')
#1
#print('((Chi2: 300 features))-->((Forward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, chi2)
#X_train_wfs, X_test_wfs = forward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_LDA, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#2
print('((Mutual info: 300 features))-->((Forward_Selection: 20- features))')
X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
X_train_wfs, X_test_wfs = forward_feature_selecion(X_train_fs, y_train, X_test_fs)
Accuracy_list = [0, 0, 0, 0, 0]
get_performace_measures(MODEL_LDA, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#3
#print('((Chi2: 300 features))-->((Backward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, chi2)
#X_train_wfs, X_test_wfs = backward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_LDA, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#4
#print('((Mutual info: 300 features))-->((Backward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
#X_train_wfs, X_test_wfs = backward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_LDA, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#print('\nNaive Bayes Classification\n')
#5
#print('((Chi2: 300 features))-->((Forward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, chi2)
#X_train_wfs, X_test_wfs = forward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_NB, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#6
#print('((Mutual info: 300 features))-->((Forward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
#X_train_wfs, X_test_wfs = forward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_NB, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#7
#print('((Chi2: 300 features))-->((Backward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
#X_train_wfs, X_test_wfs = backward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_NB, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#8
#print('((Mutual info: 300 features))-->((Backward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
#X_train_wfs, X_test_wfs = backward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_NB, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#print('\nRandom Forest Classification\n')
#9
#print('((Chi2: 300 features))-->((Forward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, chi2)
#X_train_wfs, X_test_wfs = forward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_RF, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#10
#print('((Mutual info: 300 features))-->((Forward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
#X_train_wfs, X_test_wfs = forward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_RF, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#11
#print('((Chi2: 300 features))-->((Backward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
#X_train_wfs, X_test_wfs = backward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_RF, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)
#12
#print('((Mutual info: 300 features))-->((Backward_Selection: 20- features))')
#X_train_fs, X_test_fs = filter_feature_selection(X_train_norm, y_train, X_test_norm, mutual_info_classif)
#X_train_wfs, X_test_wfs = backward_feature_selecion(X_train_fs, y_train, X_test_fs)
#Accuracy_list = [0, 0, 0, 0, 0]
#get_performace_measures(MODEL_RF, X_train_wfs, X_test_wfs, y_train, y_test, Accuracy_list)