[aa8877]: / QuRNom_construction.Rmd

Download this file

344 lines (277 with data), 10.6 kB

---
title: "Nomogram"
author: "Pranjal"
date: "2/21/2019"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Initial Setup and Package Loads in R 

Packages used for the analysis.
```{r initial_setup, cache=FALSE, message = FALSE, warning = FALSE}
library(glmnet);library(survival);library(survminer);library(readxl);library(ggplot2); library(GGally)
library(knitr); library(rmdformats); library(magrittr)
library(skimr); library(Hmisc); library(Epi); library(vcd)
library(tidyverse) 

## Global options

options(max.print="75")
opts_chunk$set(comment=NA,
               message=FALSE,
               warning=FALSE)
opts_knit$set(width=75)


skimr::skim_with(numeric = list(hist = NULL),
                 integer = list(hist = NULL))
```

## Loading the Raw Data into R 

Loading raw dataset into R.

Training Data from CCF with minimum and max. survival time.
```{r train_set}
train <- read.csv("dataset_train.csv")
#train <- na.omit(train1)

```


```{r}
train$group1 <- ifelse(train$time>=60,'long','short')
```
```{r}
colSums(is.na(train))
```

```{r}
complete_train <- train[complete.cases(train), ]
```

```{r}
train2 <-  with(complete_train, subset(complete_train, !complete_train$Cases %in% complete_train$Cases[therapy == 1]))

```

```{r}
#train1 <- train2[complete.cases(train2), ]
train1 <- complete_train
```
```{r}
res.cox <-  coxph(Surv(time, status) ~ QuRiS +  stage, data = train1)
summary(res.cox)
```


```{r}
library("rms")
library("survey")
library("SvyNom")

dd <- datadist(train1)
options(datadist = "dd")

dstr2 <- svydesign(id = ~1, strata = ~group1 , data = train1)

mynom <- svycox.nomogram(.design = dstr2, .model =
Surv(time, status) ~  QuRiS + stage, .data = train1, pred.at = 60, fun.lab = "5-Year DFS")  

```

```{r}
plot(mynom$nomog)
```

```{r}
svycox.calibrate(mynom)
```


```{r}
mynom[["nomog"]]
```

```{r}
ppp <- mynom$nomog$`3-Year DFS`
```
```{r}
threshold2 <- ppp$x[6]
threshold3 <- ppp$x[4]
threshold4 <- ppp$x[1]
threshold2
threshold3
threshold4
```

```{r}
varnames <- c("stage", "QuRiS")
```


```{r}
kk1 <- complete_train[,varnames]
two <- mynom$nomog$QuRiS$points
sig <- mynom$nomog$QuRiS$QuRiS
four <- mynom$nomog$stage$points
```

```{r}
for (i in 1:(length(two)-1)){
kk1$Rec1 <- ifelse(kk1$QuRiS > sig[i], two[i+1],kk1$Rec1)
}
```

```{r}
kk1$stage <- as.character(kk1$stage)
kk1$stage[kk1$stage == "stage1"] <- four[1]
kk1$stage[kk1$stage == "stage2"] <- four[2]
```


```{r}
varnames <- c("stage", "Rec1")
MAIN <- kk1[, varnames]
store <- data.matrix(MAIN)
POINTS <- rowSums(store)
```
```{r}
complete_train <- cbind(complete_train, POINTS)
```


```{r}

complete_train$Condition <- 2
complete_train$Condition[complete_train$POINTS <= threshold3 & complete_train$POINTS > threshold2] <- 3
complete_train$Condition[complete_train$POINTS <= threshold4 & complete_train$POINTS > threshold3] <- 4
complete_train$Condition[complete_train$POINTS > threshold4] <- 5

```

```{r}
x.sub <- subset(complete_train, Condition == 5)
dim(x.sub)
aggregate(x.sub[,], list(x.sub$therapy), mean)$time
```

```{r}
fit2 <- survfit(Surv(time, status) ~ therapy, data = x.sub)


ggsurvplot(
   fit2,                     # survfit object with calculated statistics.
   data = x.sub,             # data used to fit survival curves.
   size = 1.2,
 #  palette = c("#000099",  "#FFFF00", "#CC0000"),
   risk.table = TRUE,       # show risk table.
   pval = TRUE,             # show p-value of log-rank test.
   xlab = "Time in months"   # customize X axis label.

)
```


```{r}
variables <- c("therapy")
univ_formulas <- sapply(variables,
                        function(x) as.formula(paste('Surv(time, status)~', x)))

univ_models <- lapply(univ_formulas, function(x){coxph(x, data = x.sub)})
# Extract data 
univ_results <- lapply(univ_models,
                       function(x){ 
                         x <- summary(x)
                         p.value<-signif(x$wald["pvalue"], digits=2)
                         wald.test<-signif(x$wald["test"], digits=2)
                         beta<-signif(x$coef[1], digits=2);#coeficient beta
                         HR <-signif(x$coef[2], digits=2);#exp(beta)
                         HR.confint.lower <- signif(x$conf.int[,"lower .95"], 2)
                         HR.confint.upper <- signif(x$conf.int[,"upper .95"],2)
                         HR <- paste0(HR, " (", 
                                      HR.confint.lower, "-", HR.confint.upper, ")")
                         res<-c(beta, HR, wald.test, p.value)
                         names(res)<-c("beta", "HR (95% CI for HR)", "wald.test", 
                                       "p.value")
                         return(res)
                         #return(exp(cbind(coef(x),confint(x))))
                       })
res <- t(as.data.frame(univ_results, check.names = FALSE))
as.data.frame(res)
```



```{r}
x.sub <- subset(complete_train, Condition == 4)
dim(x.sub)
aggregate(x.sub[,], list(x.sub$therapy), mean)$time
```

```{r}
variables <- c("therapy")
univ_formulas <- sapply(variables,
                        function(x) as.formula(paste('Surv(time, status)~', x)))

univ_models <- lapply(univ_formulas, function(x){coxph(x, data = x.sub)})
# Extract data 
univ_results <- lapply(univ_models,
                       function(x){ 
                         x <- summary(x)
                         p.value<-signif(x$wald["pvalue"], digits=2)
                         wald.test<-signif(x$wald["test"], digits=2)
                         beta<-signif(x$coef[1], digits=2);#coeficient beta
                         HR <-signif(x$coef[2], digits=2);#exp(beta)
                         HR.confint.lower <- signif(x$conf.int[,"lower .95"], 2)
                         HR.confint.upper <- signif(x$conf.int[,"upper .95"],2)
                         HR <- paste0(HR, " (", 
                                      HR.confint.lower, "-", HR.confint.upper, ")")
                         res<-c(beta, HR, wald.test, p.value)
                         names(res)<-c("beta", "HR (95% CI for HR)", "wald.test", 
                                       "p.value")
                         return(res)
                         #return(exp(cbind(coef(x),confint(x))))
                       })
res <- t(as.data.frame(univ_results, check.names = FALSE))
as.data.frame(res)
```

```{r}
x.sub <- subset(complete_train, Condition == 3)
dim(x.sub)
aggregate(x.sub[,], list(x.sub$therapy), mean)$time
```

```{r}
variables <- c("therapy")
univ_formulas <- sapply(variables,
                        function(x) as.formula(paste('Surv(time, status)~', x)))

univ_models <- lapply(univ_formulas, function(x){coxph(x, data = x.sub)})
# Extract data 
univ_results <- lapply(univ_models,
                       function(x){ 
                         x <- summary(x)
                         p.value<-signif(x$wald["pvalue"], digits=2)
                         wald.test<-signif(x$wald["test"], digits=2)
                         beta<-signif(x$coef[1], digits=2);#coeficient beta
                         HR <-signif(x$coef[2], digits=2);#exp(beta)
                         HR.confint.lower <- signif(x$conf.int[,"lower .95"], 2)
                         HR.confint.upper <- signif(x$conf.int[,"upper .95"],2)
                         HR <- paste0(HR, " (", 
                                      HR.confint.lower, "-", HR.confint.upper, ")")
                         res<-c(beta, HR, wald.test, p.value)
                         names(res)<-c("beta", "HR (95% CI for HR)", "wald.test", 
                                       "p.value")
                         return(res)
                         #return(exp(cbind(coef(x),confint(x))))
                       })
res <- t(as.data.frame(univ_results, check.names = FALSE))
as.data.frame(res)
```

```{r}
x.sub <- subset(complete_train, Condition == 2)
dim(x.sub)
aggregate(x.sub[,], list(x.sub$therapy), mean)$time
```


```{r}
library(forestplot)
# Cochrane data from the 'rmeta'-package
cochrane_from_rmeta <- 
  structure(list(
    mean  = c(NA, NA, 0.13, 1.1, 2.3, 1.5),
    lower = c(NA, NA, 0.99, 0.1, 0.5,0.33),
    upper = c(NA, NA, 0.004, 8.4, 10,6.5)),
    .Names = c("mean", "lower", "upper"), 
    row.names = c(NA, -11L), 
    class = "data.frame")

tabletext<-cbind(
 # c("", "Study", "Surv.Prob < 0.20", "0.20 < Surv.Prob <0.40",  "0.40 < Surv.Prob < 0.60", "0.60 < Surv.Prob < 0.80", "0.80 < Surv. Prob."),
  c("", "Estimated Survival-Benefit","<20%",">20% & <40%", ">40% & <20%", ">70%"),
  c("Treatment", "Chemo", "37.11","43.97", "20.34", "38.54"),
  c("Treatment","Non-Chemo","11.94","28.08","47.94","43.57"),
  c("", "P-Value", "<0.01", "0.98", "0.29", "0.62"))

forestplot(tabletext,
                   cochrane_from_rmeta$mean,
                   cochrane_from_rmeta$lower,
                   cochrane_from_rmeta$upper,new_page = TRUE,
           txt_gp = fpTxtGp(label = gpar(fontfamily = "Arial"), cex = 0.8),
           hrzl_lines = gpar(col="#444444"),
           graph.pos = 3,
          colgap=unit(c(2),"mm"),
          lineheight = unit(c(15),"mm"),
      #     cochrane_from_rmeta,new_page = TRUE,
           is.summary=c(TRUE,TRUE,rep(FALSE,4)),
           align = c("c", "c", "c", "c"),
           clip=c(0.0004,10), 
           xlog=TRUE,
      
           col=fpColors(box="red",line="darkred", hrz_lines = "#444444"),
           vertices=FALSE,
          fn.ci_norm=c("fpDrawDiamondCI"),
                 boxsize=0.2,
           cex.axis=8,
          xlab="Hazard Ratios")

x <- unit(0.5, 'npc'); y <- unit(.96, 'npc')
grid.text('D3:Disease Free Survival', x, y, gp = gpar(fontsize=15, font=2))

# Fix manually the position of the HR numbers
#xhr <- unit(0.68, 'npc'); yhr <- unit(0.65, 'npc')
#grid.text('0.09', xhr, yhr, gp = gpar(fontsize=10, font=1))

#xh2r <- unit(0.75, 'npc'); yh2r <- unit(0.52, 'npc')
#grid.text('0.19', xh2r, yh2r, gp = #gpar(fontsize=10, font=1))

#xl2r <- unit(0.80, 'npc'); yl2r <- unit(0.38, 'npc')
#grid.text('0.57', xl2r, yl2r, gp = gpar(fontsize=10, font=1))

#xlr <- unit(0.82, 'npc'); ylr <- unit(0.25, 'npc')
#grid.text('1.9', xlr, ylr, gp = gpar(fontsize=10, font=1))

#xl2r <- unit(0.92, 'npc'); yl2r <- unit(0.25, 'npc')
#grid.text('13', xl2r, yl2r, gp = gpar(fontsize=10, font=1))

```