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Abstract

Named Entity Recognition (NER) is a broadly stud-
ied classification task in Natural Language Process-
ing (NLP). This task is particularly challenging in
some contexts, such as biomedical data, due to
the heterogeneous nature of this kind of data with
very specific concepts and many entities to identify.
Several methods have been explored for NER on
biomedical data, but there is still much to do. Gener-
ative approaches that have proven to be significantly
good for NER on several types of data have not
shown convincing results on biomedical data. The
aim of this work is to explore different ways to ad-
dress these problems using a generative approach.
Particularly, we compare the results of three differ-
ent approaches: a Mask Language Model (MLM) as
a baseline, a Generative model, and a combination
of MLM and Generative model.

1 Introduction

Named Entity Recognition (NER) is a classification
task in Natural Language Processing that deals with
the identification and classification of named items
in unstructured data [1]. These items belong to pre-
defined semantic types such as persons, locations,
and organizations [2].

NER systems are commonly used as the first step
in question answering models [3], machine transla-
tion [4], co-reference resolution [5], or information
extraction [6][7]. For this work, we are going to fo-
cus on the case of NER for information extraction,
particularly in the domain of biomedical data.

We have two main motivations to focus on this
kind of data. On the one hand, mainly after the
Covid-19 pandemic, there has been a significant in-
crease in the availability of biomedical documents in
the form of research papers, case reports, electronic
health records, and clinical notes [8]. To keep up

with the increasing demand for biomedical knowl-
edge, large-scale data management is necessary. In
its current state, it is very challenging for researchers
to manage and infer information from unstructured
texts. On the other hand, biomedical data represents
a challenge for NER compared with more common
contexts where the current approaches have proven
to be sufficiently good. The difficulty of the con-
cepts biomedical data deals with alongside the fact
that usually the systems used for medical purposes
require an important degree of confidence make it a
big challenge of this topic.

Common entities in biomedical data are genes, dis-
eases, species, or chemicals [9]. In a more clinical
domain, we have entities such as drugs, conditions,
devices, and others [10]. These kinds of entities tend
to be very specific for each work, and furthermore,
the field is continuously evolving, so there is a need
for new and robust approaches to address the task.

1.1 Common approaches for NER on
biomedical data

Several techniques have been used for NER on
biomedical data. The first approaches correspond
to knowledge-based methods. These methods rely
on rules, regular expressions, or domain-specific dic-
tionaries to identify entities in texts [11]. The per-
formance of these approaches is limited and very de-
pendent on the specific case of use, even when multi-
ple creative solutions have been found to make them
more robust.

Furthermore, machine learning (ML) techniques
such as Support Vector Machine (SVM) [12], Hidden
Markov Models (HMM) [13], or Conditional Random
Fields (CRF) [14] have also been used for NER and
have shown very good results with the appropriate
feature engineering process [15][16][17].

The emergence of Deep Learning (DL) methods
was a breakthrough for NER. It opens the possibility
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of learning more complex relations between features
automatically. These models are less domain-specific
dependent and more robust. Several DL architec-
tures such as LSTM [18], RNN [19], or Bi-LSTM
[20] have been widely used.
However, as in many NLP tasks, the development

of transformer [21] architectures revolutionized the
state of the art in NER. This architecture lets us
take advantage of its efficiency to train models on
very large data, something impossible before. Then,
by just adding some adaptive layers, we can fine-
tune models for specific downstream tasks and take
advantage of all the knowledge the model has seen
during the pre-training process. Models such as
BERT [22], which stands for Bidirectional Encoder
Representations from Transformers, have proven to
have very good performance on NER. These kinds
of models are known as Masked Language Models
(MLM) because of the approach used during train-
ing: prediction of original tokens by randomly chang-
ing them to a special [MASK] token. Even though
the current results are really promising, there is still
a gap between the results obtained on general data
and biomedical data [23].
Currently, with the boom of Generative models af-

ter the Chat-GPT revolution, several studies have
been conducted on NER with generative approaches
[24]. This kind of models has shown good results on
Zero-shot and Few-Shot learning scenarios for NER
on general entities, which is not the case for biomed-
ical data [23][25]. There is still not a clear way to
address the problem from a generative perspective.
The kind of prompts to use is very dependent on the
specific model you use, and even for the same model,
there is no clarity about the best way to work.
With that in mind, in the present work, we explore

different options to address NER on biomedical data
using generative approaches. Firstly, we study two
different prompt settings to solve the task with a
Few-shot approach. Then we propose a combina-
tion of MLM and generative approach as a way to
leverage the capabilities of both. We perform exper-
iments on a dataset known as CHIA [10], consisting
of clinical trial eligibility criteria texts. Following the
study by Tian et al. [26], we use RoBERTa [27] as
baseline for our work.

2 Methods

The aim of this work is to compare three different
approaches for NER on biomedical data:

• MLM: Use a MLM as baseline, based on the
study by Tian et al [26]

• Generative model: Use a Few-shot approach for
NER with a generative model

• MLM + Generative model: Combine the base-
line MLM with a generative model to enhance
the annotations

In the following three sections we explain each of
these approaches.

2.1 MLM

The first approach we work with as a baseline is an
MLM. Particularly, we use RoBERTa [27] follow-
ing the fact that it has proven to be effective in the
dataset that we use in our experiments [26].
This model is a version of BERTmodel with some

training improvements. This model was trained for
more epochs and with bigger batches as well as addi-
tional data. The next sentence prediction objective
was removed from the original BERT training set-
ting. They also used longer sequences for training,
enhancing the long-term robustness of the model, as
well as dynamically updating for masking pattern.
As stated before, MLMs are well-known for their

ability to adapt well to different downstream tasks
such as NER by just adding customized layers. Par-
ticularly, we use a token classification version of
RoBERTa. It is the model with a token classi-
fication head on top (a linear layer on top of the
hidden-states output).

2.2 Generative model

For the second approach, we propose the use of
a Generative model with a prompt-based method
for NER. We explore two different settings for the
prompt used in the generation phase with a Few-
shot approach. In both cases, we add at the begin-
ning of the prompt a brief explanation about the task
with the list of entities we are considering, which is a
common procedure in current studies [24]. Then we
provide one example for the first prompt and two for
the second one. In both cases, the examples are very
simple, with the goal of illustrating to the model the
annotation scheme more than explaining the nature
of the entities in the examples. The objective is to
evaluate the model’s intrinsic capability to solve the
task without more information than its own training
data.
The main difference between both prompts is in

the format of the annotations. In both cases, the
input is a plain text sentence. For the first case,
the model is expected to annotate in the exact for-
mat the data is originally annotated. For the second
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case, the output is expected to be the same sentence
tagged in place in a format: <entity name> text
corresponding to the entity </entity name>. In the
figures 1 and 2 of Appendix A, we show one example
for each of them.
For this work we decided to useMistral-7bmodel

[28]. This is an open-source Large Languege Model
(LLM) with seven billions of parameters. Even
though it is not as big as other LLMs, it has shown
state-of-the-art results on several NLP tasks.

2.3 MLM + Generative model

The last proposal consists of a combination of the
first two approaches. The proposed model is an en-
semble of an MLM and a generative model. We fine-
tune the MLM just as in the first approach. Then,
the final annotations are the results of a sort of ver-
ification process using the generative model.

The idea is to take the annotations of the MLM
and create a prompt to put the generative model to
verify the annotations and correct them if needed.
The final output is the sentence annotated in the
format of the second prompt we discussed in the pre-
vious section.
The hypothesis behind this idea is that for the

generative model, it should be easier to handle a pre-
viously annotated sentence and just correct it than
making the entire annotation. We consider that this
approach can help the model improve the perfor-
mance on the less represented entities particularly
and also make the annotations more precise in gen-
eral.
In Figure 3 of Appendix A, we show one example

of the verification prompt that we define.

3 Experiments and results

In this section, we present the experiments and re-
sults using each of the previous approaches for NER
on clinical trial eligibility criteria texts. We begin by
examining the dataset used for experiments in sec-
tion 3.1. Then, in section 3.2, we explain the eval-
uation metrics used in the experiments. Finally, in
section 3.3 we show the results and conduct a critical
analysis of them, as well as a brief discussion about
potential solutions to improve the results.

3.1 Dataset

Following the study by Tian et al. [26]1, we use in
this work the CHIA dataset [10]. This is a large

1link to the github repository with original code for the
baseline paper: Clinical-trial-eligibility-criteria-NER

annotated corpus of patient eligibility criteria ex-
tracted from 1,000 interventional, Phase IV clinical
trials registered in ClinicalTrials.gov. This dataset
includes 12,409 annotated eligibility criteria, repre-
sented by 41,487 distinctive entities of 15 entity types
and 25,017 relationships of 12 relationship types.
The annotations are originally in Brat format.
To maintain consistency with the study we are us-

ing as a baseline, we do not consider relationship
types or overlapping entities. Furthermore, we con-
verted the original annotations into IOB2 format 2

using the code provided by the authors of the men-
tioned paper.
The entities selected in the previous study are

Condition, Value, Drug, Procedure, Measurement,
Temporal, Observation, Person, Mood, Device, Preg-
nancy considerations. Among these entities, we de-
cided to exclude for our work the entities Mood
and Pregnancy consideration as they are underrep-
resented compared with the rest and present con-
flicts due to the original overlapping entities in the
dataset.
For splitting the dataset files into training and test

we used the code of the original dataset, to achieve
a distribution as close as possible to their distribu-
tion. This distribution consists of 1800 training files
and 200 test files, totaling 11,102 sentences for train-
ing and 1307 for testing. Furthermore, we split the
training sentences into train and validation, taking
the 20% for validation resulting in 8881 for training
and 2221 for validation. The final distribution of en-
tities in the dataset is shown in the Table 1. The
resulting version of the dataset used for experiments
is available in huggingface 3 to allow the replication
of our experiments.

3.2 Evaluation metrics

The evaluation strategy we follow is the same as the
one used in the baseline paper to report the results.
We use two criteria for evaluation: strict and relaxed.
For the strict mode the true entity and the pre-

dicted entity must match completely. It means that
the boundaries should be the same as well as the B
or I annotation inside the entity. As the format used
is IOB2, every entity is forced to start with B-entity
and not a B-entity is allowed inside its boundaries.
On the other hand, for the relaxed mode they use

a very permissive approach, considering two entities
matching if they have at least one token matching in
the annotation. For example in the next example we
can see two annotations corresponding to the same

2wikipedia link for IOB format explanation: IOB wiki
3dataset

3

https://github.com/ctgatecci/Clinical-trial-eligibility-criteria-NER
https://clinicaltrials.gov/
https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)
https://huggingface.co/datasets/JavierLopetegui/chia_v1


Subset Condition Value Drug Measurement Procedure Temporal Observation Person Device

train 8031 2677 2479 2292 2285 2129 1171 1136 264

val 1913 628 593 534 602 510 328 257 59

test 1104 345 443 288 311 295 166 135 23

Table 1: Entities distribution in our experiments dataset.

sentence where the true entity and predicted entity
do not match in strict mode but they do it in relaxed
mode:

• True annotation: O B-Condition I-Condition I-
Condition O

• Predicted annotation: O O O I-Condition O

Finally, we compute the recall, precision and f1-
score in both modes for each entity and overall.
We also report a world level overall accuracy, which
means the accuracy considering each individual an-
notation, not the full entity.

3.3 Experiments descriptions and results

Now we are going to explain the experiments we use
to evaluate the proposed methods. Firstly, we ex-
plain the process for selecting the best prompt to
use for the generative approach and subsequently the
final experiments for each of the three approaches.

3.3.1 Prompt selection for Generative
model approach

We conducted a preliminary experiment to select the
most promising prompt among the two we proposed.
For this experiment, we used a small subset of the
testing data. Specifically, we took 50 sentences from
the test data and generated the annotations with
each prompt.
As we stated before, we use Mistral-7b [28]

model for generation. In order to save computational
power we used a 4-bit quantization of the model.
Previous studies have shown that working with that
resolution does not significantly decrease the perfor-
mance of the model. Furthermore, we use the text
generation pipeline4 from huggingface. The exact
details of the experiment can be found on the Github
repository of this project 5.
Finally, after making the annotations for each

prompt in the selected sentences, we perform some
processing to align the model output with the origi-
nal sequence. To do so, we use the same tokenizer to

4text generation pipeline huggingface: pipelines
5Github repository for this work: NER-ClinicalTrials-

Elegibility-Criteria

process the outputs and the original sentences, keep-
ing the annotations. Even after that process, we
encounter some alignment problems. These prob-
lems are mostly related to punctuation signs. In
some cases there are unexpected signs at the end
of the original sentence which are not replicated by
the generative model, while in other cases the model
add signs not in the sentence provided as input. We
provide two examples to illustrate this:

• Example 1:

– true tokens: ’severe’, ’respiratory’, ’dis-
ease’, ’;’

– true annotations: B-Condition, I-
Condition, I-Condition, O

– predicted tokens: ’severe’, ’respiratory’,
’disease’

– predicted annotations: B-Condition, I-
Condition, I-Condition

• Example 2:

– true tokens: ’Invasive’, ’fungal’, ’infec-
tions’, ’in’, ’history’, ’and’, ’at’, ’present’

– true annotations: B-Condition, I-
Condition, I-Condition, O, O, O, O,
O

– predicted tokens: ’Invasive’, ’fungal’,
’infections’, ’in’, ’history’, ’and’, ’at’,
’present’, ’.’

– predicted annotations: B-Condition, I-
Condition, I-Condition, O, B-Condition,
O, O, O, B-Condition

As we can see, in both cases, there is a difference of
1 token between the prediction and the ground truth.
In the first case, there is a ’;’ at the end of the original
sentence that is not replicated by the model in the
output. Then, in the second case, the model adds a
period at the end of the prediction that is not in the
original sentence. These problems are related with
inconsistency in the way of ending the annotations
in the dataset, it would be better to standardize in
order to have always the same behavior.
Therefore, we only use for the final evaluation

those sentences resulting in the same length after

4
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tokenization. For the two prompts, we remove 28%
of the sentences. This resulted in the following dis-
tribution of true entities for evaluation: total = 292,
drug = 17, condition = 234, measurement = 8, value
= 7, procedure = 11, temporal = 11, observation =
3, and person = 1.
We can see the experiments results obtained for

strict evaluation and accuracy over the two prompts
in Table 2. We can see that the second prompt shows
better results for all the metrics with not significant
difference for recall. Taking into account these re-
sults we consider that the second prompt is more
promising. Thus, we use it as the final prompt con-
figuration in the Generative approach.

Strict

Prompt acc recall prec f1-score

1 0.5583 0.5862 0.4392 0.5022

2 0.6897 0.5958 0.6281 0.6115

Table 2: Strict criteria metrics and accuracy for the
two prompts.

In order to explain the difference in perfor-
mance we should analyse the difference between the
prompts. The first one is that the first prompt just
contains one example for the task while the second
has two. Anyway, as the examples are not very rep-
resentative for all the entities and are used just to
explain the structure of the model output, we con-
sider that this is not the main source of the differ-
ence. Then, the main difference between the two
prompts may be due to the fact that in the first one
we ask the model to put the output in IOB format
and it can add an unnecessary complexity to the
task, as it is something that can be easily done as a
post-processing step. Furthermore, previous studies
suggest that using the output format of the second
prompt is a better way to address the task [23].

3.3.2 MLM experiments

For the MLM approach as stated before, we use the
huggingface RoBERTa version for token classifica-
tion. We trained the model using the Trainer6 mod-
ule from huggingface. The training process was con-
ducted over three epochs, using the default cross-
entropy loss for classification tasks. The details of
the training arguments can be found on the Github
repository. The metrics reported during training
corresponds to seqeval module, similar to the strict
mode we are reporting. Furthermore, the report for
training process is available on wandb7.

6Trainer module link: trainer
7MLM training report: report

The results obtained on testing phase using MLM
approach can be seen in the table 3. These results
correspond to a subset of test data given by the align-
ment problems with generative approaches. The re-
sults over the entire data are available on the repos-
itory. We are showing these ones in order to obtain
a fair comparison between the different approaches.
Furthermore, the results obtained are inline with

those obtained by Tian et al. [26]

3.3.3 Generative approach experiments

The experiments for the Generative approach over
the entire dataset were conducted with the same
methodology as those explained in Section 3.3.1. In
this case, we made predictions over the entire test
dataset. Once again, we only considered sentences
with the same length after tokenization in true and
predicted labels. This resulted in a reduction of
around 17%. In this case we kept this data distribu-
tion even when it does not match to the one used for
the other two approaches, as the performance differ-
ence is evident.
The results obtained are shown in Table 3.

3.3.4 MLM + Generative model approach

For this approach, the experiments mainly involve a
combination of the two approaches explained before.
We take the RoBERTa model already trained on
the CHIA dataset and generate the annotations for
the test data. Then, using the same parameters for
loading the Mistral-7b model, we perform the veri-
fication step with the prompt explained in Section
2.3.
As we have discussed, due to alignment problems

between the annotations and the ground truth, we
have used a subset of the test data that represents
around 70% of its original size for testing.
The results are shown in table 3.

3.3.5 Discussion

In the results reported, we can observe a clear dif-
ference between the two approaches using MLM and
the pure generative one. It suggests that, in a Few-
shot scenario, the performance of generative models
for NER on biomedical data is limited, which is con-
sistent with the results and analysis made by Naguib
et al. [23].
However, we can see that in the third approach,

the use of a generative approach to make a verifica-
tion process to the MLM’s annotations shows inter-
esting results, mainly for strict evaluation and also
for overall precision. It strengthens our hypothesis
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Strict Relaxed

Entity Model acc recall prec f1-score recall prec f1-score

overall
RoBERTa 0.8273 0.6960 0.6645 0.6799 0.8361 0.7982 0.8167
Mistral-7b 0.6011 0.5124 0.5346 0.5232 0.6283 0.6556 0.6417
RoBERTa +
Mistral-7b

0.8156 0.7389 0.7353 0.7371 0.8349 0.8308 0.8329

Person
RoBERTa - 0.8613 0.8130 0.8365 0.8613 0.8130 0.8365
Mistral-7b - 0.0224 0.0285 0.0251 0.0449 0.0571 0.0503
RoBERTa +
Mistral-7b

- 0.7701 0.7444 0.7570 0.8160 0.7888 0.8022

Drug
RoBERTa - 0.7670 0.7460 0.7564 0.8714 0.8476 0.8594
Mistral-7b - 0.5759 0.5301 0.5520 0.6937 0.6385 0.6649
RoBERTa +
Mistral-7b

- 0.7854 0.7548 0.7698 0.8866 0.8521 0.8690

Value
RoBERTa - 0.7607 0.7227 0.7412 0.9043 0.8590 0.8811
Mistral-7b - 0.0099 0.1363 0.0185 0.0598 0.8181 0.1114
RoBERTa +
Mistral-7b

- 0.7549 0.7230 0.7386 0.8627 0.8262 0.8441

Condition
RoBERTa - 0.7722 0.6894 0.7284 0.9204 0.8217 0.8682
Mistral-7b - 0.6465 0.6060 0.6256 0.7748 0.7263 0.7498
RoBERTa +
Mistral-7b

- 0.7836 0.7823 0.7829 0.8681 0.8668 0.8675

Measurement
RoBERTa - 0.6441 0.6176 0.6306 0.8343 0.8000 0.8168
Mistral-7b - 0.1607 0.1223 0.1389 0.3137 0.2388 0.2711
RoBERTa +
Mistral-7b

- 0.6625 0.6315 0.6467 0.8098 0.7719 0.7904

Temporal
RoBERTa - 0.6038 0.5670 0.5849 0.7727 0.7256 0.7484
Mistral-7b - 0.0000 0.0000 0.0000 0.0578 0.6086 0.1056
RoBERTa +
Mistral-7b

- 0.5783 0.6233 0.6000 0.7727 0.7168 0.7437

Procedure
RoBERTa - 0.5524 0.5302 0.5410 0.7342 0.7046 0.7191
Mistral-7b - 0.3745 0.3983 0.3860 0.4741 0.5042 0.4887
RoBERTa +
Mistral-7b

- 0.6142 0.5771 0.5951 0.7500 0.7046 0.7266

Device
RoBERTa - 0.3000 0.375 0.3333 0.3000 0.3750 0.3333
Mistral-7b - 0.1515 0.2777 0.1960 0.1515 0.2777 0.1960
RoBERTa +
Mistral-7b

- 0.3000 0.3333 0.3157 0.3000 0.3333 0.3157

Observation
RoBERTa - 0.2 0.3225 0.2469 0.3400 0.5483 0.4197
Mistral-7b - 0.0240 0.0306 0.0269 0.0880 0.1122 0.0986
RoBERTa +
Mistral-7b

- 0.2142 0.3500 0.2658 0.3265 0.5333 0.4050

Table 3: Results of three approaches over test dataset.
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in Section 2.3 about the capacity of generative mod-
els to work better on a verification task than in a
fully annotated schema.

It would be important to get a more accurate
idea of the real impact of this approach to solve the
alignment problems faced during the experiments.
Testing over the entire dataset would be important,
mainly for less common entities.

Furthermore, exploring other approaches for ver-
ification prompts would be interesting. Making
clearer prompts, with fewer entities at a time, can
improve the efficiency of the generative model [23].

It is important to consider the big difference in
terms of computational resource demand between
MLM and generative models. The second ones are
really expensive, and even when you can obtain
slightly better results, this topic is something to keep
in mind. There is a significant difference in the com-
putation time during the inference phase between
the two approaches. For the MLM experiments, us-
ing a batch size of eight resulted in 164 batches, and
the generation took less than a minute. On the other
hand, for the generative approach experiments, us-
ing a batch size of one, the average time per sentence
was around forty seconds.

The experiments were performed using a Google
Colab environment with a single T4-GPU. We con-
sider it would be more accurate to conduct the ex-
periments using more GPUs to enable more efficient
generation for the second set of experiments.

4 Conclusions

In this work, we explored the capacity of gener-
ative models to enhance the performance of cur-
rent models on NER in the context of biomedical
data. We proposed two generative approaches for
the task: the first being a pure generative approach,
and the second involving a combination of a MLM
with a generative model to verify the annotations.
The results obtained suggest that this verification
step, conducted after MLM annotations, could be
a promising way to leverage the potential of each
model to improve annotations. However, conduct-
ing more rigorous experiments would be important
to obtain more definitive results.
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A Appendix: Prompts used in generative approaches

Figure 1: Example of the first prompt proposed for Generative approach.
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Figure 2: Example of the second prompt proposed for Generative approach.

Figure 3: Example of the verification prompt used in MLM + Generative model approach.
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