--- a +++ b/Roberta+LLM/mistral7b-full-evaluation.ipynb @@ -0,0 +1,3339 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "<a href=\"https://colab.research.google.com/github/jlopetegui98/NER-ClinicalTrials-Eligibility-Criteria/blob/main/Roberta%2BLLM/mistral7b-full-evaluation.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "GREqJcq4OLO6", + "outputId": "511e84c9-0109-411a-b44e-0801766d0fe9", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ], + "source": [ + "# uncomment if working in colab\n", + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "ICZaolBLOLO8", + "outputId": "c8c38b1c-e0e3-4258-cc8b-d7d684d9d089", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seqeval in /usr/local/lib/python3.10/dist-packages (1.2.2)\n", + "Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from seqeval) (1.25.2)\n", + "Requirement already satisfied: scikit-learn>=0.21.3 in /usr/local/lib/python3.10/dist-packages (from seqeval) (1.2.2)\n", + "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.21.3->seqeval) (1.11.4)\n", + "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.21.3->seqeval) (1.4.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.21.3->seqeval) (3.5.0)\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.3.0)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.14.0)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.11.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.3)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2023.6.0)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch) (8.9.2.26)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch) (2.20.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch) (12.1.105)\n", + "Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.3.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch) (12.4.127)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.5)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n" + ] + } + ], + "source": [ + "# uncomment if using colab\n", + "!pip install -q -U datasets\n", + "!pip install seqeval\n", + "!pip install -U torch\n", + "!pip install -q -U evaluate\n", + "!pip install -q -U git+https://github.com/huggingface/transformers.git\n", + "# !pip install -q -U transformers\n", + "!pip install -q -U bitsandbytes\n", + "!pip install -q -U git+https://github.com/huggingface/peft.git\n", + "!pip install -q -U git+https://github.com/huggingface/accelerate.git\n", + "# !pip install -q -U accelerate" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "Km86o_uHOLO8" + }, + "outputs": [], + "source": [ + "import torch\n", + "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextGenerationPipeline\n", + "import os\n", + "from utils import *" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "from datasets import Dataset, DatasetDict, load_dataset" + ], + "metadata": { + "id": "L0zkxHTmOxkJ" + }, + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import re" + ], + "metadata": { + "id": "uoWkyegpPCOZ" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "L0zE4thvOLO9", + "outputId": "75716581-4307-4d98-fddf-887bc825e808", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145, + "referenced_widgets": [ + "009541513b8e451886782e457d7cd479", + "519375173fe64735a4faccf127abcf90", + "484017270bb646119bc605fccb88fa4e", + "23dc47bf61314784b7ffb42d995bbce9", + "7fdc12ed98be4101a7ff8d15272d5033", + "683aa055aae842adabca4ee3fa9a16bf", + "6ab04465b07747a592cb28f77c6b5e20", + "2379403cd2df4ffd9f7d4eecbf571d7e", + "382eff5973b942678fde4a9c6e9c8150", + "aec5500c07b54365ab252b5746e08127", + "86ed1786dfcc49148bc65e88627a34f3", + "36b52f9261ae4c589efc8faab5806509", + "8c0ca5e87a1243ba94d821d87dfd7cc1", + "1d62a5d167c04e839152933688357dbe", + "20614482956a4d359d7e6470fe3b5236", + "b46a3ac13be24c04a0c47d424e54d256", + "94885d557c64483bbcb842c570e380a5", + "0ca2c9f7ad19437886ef4a9aa74cf952", + "50557c598d9246599d7e894137d2df26", + "ab9a60b256554da0a101dc9d541cbb8c", + "523cf83bffdc4d8bbe06c9d886e5d884", + "0a508a2d17d04b76aa6bad327e25da96", + "7fd41498666942149a04c076f61cb6ad", + "32cfc02171c1420599bbbeca98ebfc3b", + "c72717e7d2714c7aa695cf5b6ba2481c", + "45c84a726d5e470babfb03cd5b139de7", + "ec182a1a030c46ac87b2fa998ea9d868", + "22972fbed4cc4b408be8abe9f9bb2847", + "09fc71a94b2f4766a02b5879ba232e95", + "da47463752ff4288a73b1802d37941aa", + "9e89840302da47e3a383888883bbadea", + "5ecf0ca50841453d85a082217c033fae" + ] + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "009541513b8e451886782e457d7cd479" + } + }, + "metadata": {} + } + ], + "source": [ + "from huggingface_hub import notebook_login\n", + "\n", + "notebook_login()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "6DQED9SWOLO9" + }, + "outputs": [], + "source": [ + "# dict for the entities (entity to int value)\n", + "simple_ent = {\"Condition\", \"Value\", \"Drug\", \"Procedure\", \"Measurement\", \"Temporal\", \"Observation\", \"Person\", \"Device\"}\n", + "sel_ent = {\n", + " \"O\": 0,\n", + " \"B-Condition\": 1,\n", + " \"I-Condition\": 2,\n", + " \"B-Value\": 3,\n", + " \"I-Value\": 4,\n", + " \"B-Drug\": 5,\n", + " \"I-Drug\": 6,\n", + " \"B-Procedure\": 7,\n", + " \"I-Procedure\": 8,\n", + " \"B-Measurement\": 9,\n", + " \"I-Measurement\": 10,\n", + " \"B-Temporal\": 11,\n", + " \"I-Temporal\": 12,\n", + " \"B-Observation\": 13,\n", + " \"I-Observation\": 14,\n", + " \"B-Person\": 15,\n", + " \"I-Person\": 16,\n", + " \"B-Device\": 17,\n", + " \"I-Device\": 18\n", + "}\n", + "\n", + "entities_list = list(sel_ent.keys())\n", + "sel_ent_inv = {v: k for k, v in sel_ent.items()}" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "fLKSRg5XOLO9" + }, + "outputs": [], + "source": [ + "root = '..'\n", + "root = './drive/MyDrive/TER-LISN-2024'\n", + "data_path = f'{root}/data'\n", + "models_path = f'{root}/models'" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "ZZnHifTsOLO9" + }, + "outputs": [], + "source": [ + "model_name = \"mistralai/Mistral-7B-v0.1\"" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "ytfHR4b2OLO-", + "outputId": "7f66d4d3-1867-4d9f-c298-42b2368c50df", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 173, + "referenced_widgets": [ + "1ca11a0dedb44e6897fd914763d6731d", + "b418a6bbce1346bd9c0076f2d31bad26", + "b7975e8109d74252ae427c2507b70c2c", + "f0af7ea71ed14275bb36b55c87d6c785", + "ddb109aa9fed447b9e8929f2ce49b8d2", + "6e57a33e6f4641bd85d68b6773657962", + "901e5be78e494518924d3237c3398b09", + "4fdf171fbb704213a0df598adb0c918c", + "40c20831011e4706aedbe2ed73219dfd", + "83849f3935464b2ab0f77925aab9d7f3", + "e7c31cc6d3a64a4fb911f3d2023ecfb1" + ] + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "1ca11a0dedb44e6897fd914763d6731d" + } + }, + "metadata": {} + } + ], + "source": [ + "# Load base model(Mistral 7B)\n", + "bnb_config = BitsAndBytesConfig(\n", + " load_in_4bit= True,\n", + " bnb_4bit_quant_type= \"nf4\",\n", + " bnb_4bit_compute_dtype= torch.bfloat16,\n", + " bnb_4bit_use_double_quant= False,\n", + ")\n", + "model = AutoModelForCausalLM.from_pretrained(\n", + " model_name,\n", + " quantization_config=bnb_config,\n", + " device_map={\"\": 0}\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "ageLiTUKOLO-", + "outputId": "8f9850bc-2dd1-4230-9b0d-62503154247e", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(True, False)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "# import tokenizer for mistral-7B\n", + "tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)\n", + "tokenizer.padding_side = 'left'\n", + "tokenizer.pad_token = tokenizer.eos_token\n", + "tokenizer.add_eos_token = False\n", + "tokenizer.add_bos_token, tokenizer.add_eos_token" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "qMfZMKhlOLO-" + }, + "outputs": [], + "source": [ + "pipe = TextGenerationPipeline(model = model, tokenizer = tokenizer)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "E1T2wFahOLO-" + }, + "outputs": [], + "source": [ + "dataset = load_dataset('JavierLopetegui/chia_v1')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "U37CsADiOLO-" + }, + "outputs": [], + "source": [ + "# for each sentence save the text\n", + "def generate_sentences_from_tokens(sentences):\n", + " texts_sentences = []\n", + " sentences_tokens = sentences['tokens']\n", + " for sentence in sentences_tokens:\n", + " sent_text = \" \".join(sentence)\n", + " texts_sentences.append(sent_text)\n", + " sentences['text'] = texts_sentences\n", + " return sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "423oQ2BQOLO-" + }, + "outputs": [], + "source": [ + "def build_prompts(sentences, prompt_type=2):\n", + " sentences_prompts = []\n", + " for sent in sentences['text']:\n", + " prompt = build_prompt(sent, prompt_type)\n", + " sentences_prompts.append(prompt)\n", + " sentences['prompt'] = sentences_prompts\n", + " return sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "kC1PSUY9OLO_" + }, + "outputs": [], + "source": [ + "dataset = dataset.map(lambda x: generate_sentences_from_tokens(x), batched = True)\n", + "dataset_prompt2 = dataset.map(lambda x: build_prompts(x, prompt_type=2), batched = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "IEyo7EiUOLO_" + }, + "outputs": [], + "source": [ + "test_dataset_p2 = dataset_prompt2['test']" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "47SUjSaWOLO_" + }, + "outputs": [], + "source": [ + "# keep just the prompt column\n", + "test_dataset_p2 = test_dataset_p2.remove_columns(['tokens', 'text', 'ner_tags', 'file'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SAJgHjqnOLO_" + }, + "outputs": [], + "source": [ + "# data_loader_p2 = DataLoader(test_dataset_p2, batch_size=4, shuffle=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ps3MQNmIOLO_" + }, + "outputs": [], + "source": [ + "# generated_sentences_p2 = pipe(batch['prompt'], max_new_tokens = 500, return_full_text = False, handle_long_generation = \"hole\"))" + ] + }, + { + "cell_type": "code", + "source": [ + "from tqdm import tqdm" + ], + "metadata": { + "id": "VrXXsuAsSGVR" + }, + "execution_count": 18, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(test_dataset_p2['prompt'][0])" + ], + "metadata": { + "id": "pULuqZPEB5Y4", + "outputId": "75d27b13-4396-4232-b8af-ca5aad7c3b5e", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 59, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am working on a named entity recognition problem, in the context of clinical\n", + " trials eligibility criteria. I will show you the list of entities:\n", + " - Condition\n", + " - Value\n", + " - Drug\n", + " - Procedure\n", + " - Measurement\n", + " - Temporal\n", + " - Observation\n", + " - Person\n", + " - Device\n", + "\n", + " Your task consists in annotate the named entities in a given sentence in the format I will explain you.\n", + " I will explain you with some examples:\n", + "\n", + " Example 1:\n", + " Input: Patients who have received prior chemotherapy for unresectable disease.\n", + " Output: Patients who have received prior <Procedure>chemotherapy</Procedure> for <Condition>unresectable disease</Condition>.\n", + "\n", + " Example 2:\n", + " Input: Patients with any other severe concurrent disease, which in the judgment of the investigator, would make the patient inappropriate for entry into this study.\n", + " Ouput: Patients with any other severe <Condition>concurrent disease</Condition>, which in the judgment of the investigator, would make the patient inappropriate for <Observation>entry into this study</Observation>.\n", + "\n", + " As you can see, in each example, the extracted entities are enclosed using the sintax: <ENT>text of the entity</ENT>.\n", + "\n", + " Please now annotate as explained before the following sentence:\n", + "\n", + " Input: self - reported healthy adults between the ages of 18 - 60 who are fluent in English .\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "id": "QwPSO9NvOLO_", + "outputId": "b9b7841d-781a-47bf-92f0-a32c080343d1", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "100%|██████████| 1307/1307 [15:16:55<00:00, 42.09s/it]\n" + ] + } + ], + "source": [ + "generated_sentences_p2 = []\n", + "for sentence in tqdm(test_dataset_p2['prompt']):\n", + " sentence += '\\noutput: '\n", + " output = pipe(sentence, max_new_tokens = 500, return_full_text = False, handle_long_generation = \"hole\")[0]['generated_text']\n", + " output = output.split('\\n')[0]\n", + " generated_sentences_p2.append(output)" + ] + }, + { + "cell_type": "code", + "source": [ + "len(generated_sentences_p2)" + ], + "metadata": { + "id": "uTSOYC9UhKxw", + "outputId": "3799dd2c-4f62-4856-a407-0825469f89d4", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 89, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1307" + ] + }, + "metadata": {}, + "execution_count": 89 + } + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "id": "x0L_xzJXOLO_" + }, + "outputs": [], + "source": [ + "tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "id": "6i9B0a6_OLO_" + }, + "outputs": [], + "source": [ + "# tokenize and align the labels in the dataset\n", + "def tokenize_and_align_labels(sentence, flag = 'I'):\n", + " \"\"\"\n", + " Tokenize the sentence and align the labels\n", + " inputs:\n", + " sentence: dict, the sentence from the dataset\n", + " flag: str, the flag to indicate how to deal with the labels for subwords\n", + " - 'I': use the label of the first subword for all subwords but as intermediate (I-ENT)\n", + " - 'B': use the label of the first subword for all subwords as beginning (B-ENT)\n", + " - None: use -100 for subwords\n", + " outputs:\n", + " tokenized_sentence: dict, the tokenized sentence now with a field for the labels\n", + " \"\"\"\n", + " tokenized_sentence = tokenizer(sentence['tokens'], is_split_into_words=True, truncation=True)\n", + "\n", + " labels = []\n", + " for i, labels_s in enumerate(sentence['ner_tags']):\n", + " word_ids = tokenized_sentence.word_ids(batch_index=i)\n", + " previous_word_idx = None\n", + " label_ids = []\n", + " for word_idx in word_ids:\n", + " # if the word_idx is None, assign -100\n", + " if word_idx is None:\n", + " label_ids.append(-100)\n", + " # if it is a new word, assign the corresponding label\n", + " elif word_idx != previous_word_idx:\n", + " label_ids.append(labels_s[word_idx])\n", + " # if it is the same word, check the flag to assign\n", + " else:\n", + " if flag == 'I':\n", + " if entities_list[labels_s[word_idx]].startswith('I'):\n", + " label_ids.append(labels_s[word_idx])\n", + " else:\n", + " label_ids.append(labels_s[word_idx] + 1)\n", + " elif flag == 'B':\n", + " label_ids.append(labels_s[word_idx])\n", + " elif flag == None:\n", + " label_ids.append(-100)\n", + " previous_word_idx = word_idx\n", + " labels.append(label_ids)\n", + " tokenized_sentence['labels'] = labels\n", + " return tokenized_sentence" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZpemgZm_OLPA" + }, + "source": [ + "**Standarizing true annotations**" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "id": "-bbV-kgyOLPB" + }, + "outputs": [], + "source": [ + "def parse_ann2bio(sentence, pattern, pattern1, pattern2):\n", + " # if sentence[-1] == \"\\n\":\n", + " # sentence = sentence[:-2] # remove the \\n and a final point wrongly added\n", + " # else:\n", + " # sentence = sentence[:-1] # remove the final point wrongly added\n", + "\n", + " # find the entities\n", + " occurrences = re.finditer(pattern, sentence)\n", + " indexes = [(match.start(), match.end()) for match in occurrences]\n", + "\n", + " annotation = []\n", + " i = 0\n", + "\n", + "\n", + " # create the bio list\n", + " for beg, end in indexes:\n", + " if beg > i:\n", + " annotation.extend([(word, \"O\") for word in sentence[i:beg].split()])\n", + " entity = sentence[beg:end]\n", + " entity_name = re.search(pattern1, entity).group(1)\n", + " entity = entity.replace(f'<{entity_name}>', \"\").replace(f'</{entity_name}>', \"\")\n", + " split_entity = entity.split()\n", + " annotation.append((split_entity[0], \"B-\" + entity_name))\n", + " annotation.extend([(word, \"I-\" + entity_name) for word in split_entity[1:]])\n", + " i = end\n", + " annotation.extend([(word, \"O\") for word in sentence[i:].split()])\n", + "\n", + " # check punctuation sign in tokens and put them as individual tokens\n", + " ps = r'(\\.|\\,|\\:|\\;|\\!|\\?|\\-|\\(|\\)|\\[|\\]|\\{|\\}|\\\")'\n", + " new_annotation = []\n", + " for i,(word, tag) in enumerate(annotation):\n", + " if re.search(ps, word):\n", + " # find the ocurrences of the punctuation signs\n", + " occurrences = re.finditer(ps, word)\n", + " indexes = [(match.start(), match.end()) for match in occurrences]\n", + " # create the new tokens\n", + " last = 0\n", + " for j, (beg, end) in enumerate(indexes):\n", + " if beg > last:\n", + " new_annotation.append((word[last:beg], tag))\n", + " if tag != \"O\":\n", + " label = f'I-{tag.split(\"-\")[1]}'\n", + " else:\n", + " label = \"O\"\n", + " if end < len(word) or (i < len(annotation) - 1 and annotation[i+1][1] == label):\n", + " new_annotation.append((word[beg:end], label))\n", + " else:\n", + " new_annotation.append((word[beg:end], 'O'))\n", + " last = end\n", + " if last < len(word):\n", + " new_annotation.append((word[last:], label))\n", + "\n", + " else:\n", + " new_annotation.append((word, tag))\n", + "\n", + "\n", + " return new_annotation" + ] + }, + { + "cell_type": "code", + "source": [ + "new_true_annotations = []\n", + "for sent in dataset['test']:\n", + " annotation = []\n", + " for word, tag in zip(sent['tokens'], sent['ner_tags']):\n", + " annotation.append((word, entities_list[tag]))\n", + " new_annotation = []\n", + " ps = r'(\\.|\\,|\\:|\\;|\\!|\\?|\\-|\\(|\\)|\\[|\\]|\\{|\\}|\\\")'\n", + " for i,(word, tag) in enumerate(annotation):\n", + " if re.search(ps, word):\n", + " # find the ocurrences of the punctuation signs\n", + " occurrences = re.finditer(ps, word)\n", + " indexes = [(match.start(), match.end()) for match in occurrences]\n", + " # create the new tokens\n", + " last = 0\n", + " for j, (beg, end) in enumerate(indexes):\n", + " if beg > last:\n", + " new_annotation.append((word[last:beg], tag))\n", + " if tag != \"O\":\n", + " label = f'I-{tag.split(\"-\")[1]}'\n", + " else:\n", + " label = \"O\"\n", + " if end < len(word) or (i < len(annotation) - 1 and annotation[i+1][1] == label):\n", + " new_annotation.append((word[beg:end], label))\n", + " else:\n", + " new_annotation.append((word[beg:end], 'O'))\n", + " last = end\n", + " if last < len(word):\n", + " new_annotation.append((word[last:], label))\n", + " else:\n", + " new_annotation.append((word, tag))\n", + " new_true_annotations.append(new_annotation)\n", + "len(new_true_annotations)" + ], + "metadata": { + "id": "Kgi4KQythezT", + "outputId": "51229f7b-ae1e-4b5c-d1dc-b477a365ab45", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 93, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1307" + ] + }, + "metadata": {}, + "execution_count": 93 + } + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": { + "id": "ng4AD9cxOLPB", + "outputId": "3c9b6d49-4b24-4377-8017-4dbc7aba9a3f", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1307" + ] + }, + "metadata": {}, + "execution_count": 94 + } + ], + "source": [ + "true_annotations = []\n", + "for sent in new_true_annotations:\n", + " dicc_sent = {\"tokens\":[], \"ner_tags\":[]}\n", + " for word, tag in sent:\n", + " dicc_sent[\"tokens\"].append(word)\n", + " dicc_sent[\"ner_tags\"].append(sel_ent[tag])\n", + " true_annotations.append(dicc_sent)\n", + "len(true_annotations)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "id": "T3gzF1mvOLPB" + }, + "outputs": [], + "source": [ + "true_df = pd.DataFrame(true_annotations)\n", + "true_ann_dataset = Dataset.from_pandas(true_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": { + "id": "gtFN5ix8OLPB", + "outputId": "e2ccd19f-b58b-4a4a-c7e1-c3f118cda808", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "4a35141fd2544fd08d1c5748a16c28f6", + "d6e6a89659834daa88bcef28c1d5d220", + "b4f30646efe04849afd1b45f50dd3931", + "9a90159ea82b4c3f921839ea7b6f9c86", + "8698beb6d78342caaa49ea61c9ebcc58", + "5562bbdb7f064ba4867374297f2c7ef4", + "f5f58531d6474340a7e5d4ccdc171969", + "57e9591c1f1a4be58f8a826059e27d05", + "e52d41b0f7084b83abfc2dce289e9757", + "49662c4803d846d6bb15e8ba44e4b818", + "a09956aac8fb4447b241f1dc646c6429" + ] + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/1307 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "4a35141fd2544fd08d1c5748a16c28f6" + } + }, + "metadata": {} + } + ], + "source": [ + "true_ann_dataset = true_ann_dataset.map(tokenize_and_align_labels, batched=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": { + "id": "qhcwK4tTOLPB" + }, + "outputs": [], + "source": [ + "def get_labels(p):\n", + " predictions, labels = p\n", + " # Remove ignored index (special tokens)\n", + " # predictions = [\n", + " # [entities_list[p] for (p, l) in zip(prediction, label) if l != -100]\n", + " # for prediction, label in zip(predictions, labels)\n", + " # ]\n", + " predictions_ = []\n", + " for (pred,lab) in zip(predictions, labels):\n", + " predictions_.append([])\n", + " for (p,l) in zip(pred, lab):\n", + " if l != -100:\n", + " if p == -100:\n", + " predictions_[-1].append(entities_list[0])\n", + " else:\n", + " predictions_[-1].append(entities_list[p])\n", + "\n", + " labels = [\n", + " [entities_list[l] for (p, l) in zip(prediction, label) if l != -100]\n", + " for prediction, label in zip(predictions, labels)\n", + " ]\n", + "\n", + " return predictions_, labels" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "id": "kZqPzsPEOLPB" + }, + "outputs": [], + "source": [ + "from eval_file import *" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ICsodrKvOLPB" + }, + "source": [ + "**Evaluating prompt 2**" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": { + "id": "ox3BUHhrOLPC" + }, + "outputs": [], + "source": [ + "pattern1 = r'<(Person|Condition|Value|Drug|Procedure|Measurement|Temporal|Observation|Device)>'\n", + "pattern2 = r'</(Person|Condition|Value|Drug|Procedure|Measurement|Temporal|Observation|Device)>'\n", + "pattern = f'{pattern1}.*?{pattern2}'" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": { + "id": "NF6iDWPeOLPC", + "outputId": "cad977da-3c36-43ec-9bfa-482971505810", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1307" + ] + }, + "metadata": {}, + "execution_count": 100 + } + ], + "source": [ + "new_p2_annotations = []\n", + "for sent in generated_sentences_p2:\n", + " annotation = parse_ann2bio(sent, pattern, pattern1, pattern2)\n", + " new_p2_annotations.append(annotation)\n", + "len(new_p2_annotations)" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": { + "id": "kRxCaGoFOLPC", + "outputId": "6e580bb9-a3ca-40d6-8d23-3414e2da292f", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1307" + ] + }, + "metadata": {}, + "execution_count": 101 + } + ], + "source": [ + "p2_annotations = []\n", + "for sent in new_p2_annotations:\n", + " dicc_sent = {\"tokens\":[], \"ner_tags\":[]}\n", + " for word, tag in sent:\n", + " dicc_sent[\"tokens\"].append(word)\n", + " dicc_sent[\"ner_tags\"].append(sel_ent[tag])\n", + " p2_annotations.append(dicc_sent)\n", + "len(p2_annotations)" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": { + "id": "JJapA5HhOLPC" + }, + "outputs": [], + "source": [ + "p2_df = pd.DataFrame(p2_annotations)\n", + "p2_dataset = Dataset.from_pandas(p2_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": { + "id": "Wh2C3LSmOLPC", + "outputId": "ebd4d143-619c-44f1-e84e-8a06cc2d0ef0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "162bfe1f36444ce1861ceaf2c8f6a3f3", + "d33896d2c9c546e1b9d5cc12bb866d51", + "af607d56eb2c4de88e84315ebf4e5bed", + "0f469022363b4b0d96762dc3aafebffe", + "dc63518146884067aaebf37d682e83b5", + "676f0e00bfba466ea183f41ba064ff95", + "91796acd865b49e39500cbc7fdfa2e1e", + "48df188dce924c32b510d1ceb4d2450c", + "78810abaada343a998519b4cb128bf3a", + "5f6c93a23a55413f86aa4778e7d2a6c3", + "9b21d0ab5e874bf3aa723bb2114eef80" + ] + } + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Map: 0%| | 0/1307 [00:00<?, ? examples/s]" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "162bfe1f36444ce1861ceaf2c8f6a3f3" + } + }, + "metadata": {} + } + ], + "source": [ + "p2_dataset = p2_dataset.map(tokenize_and_align_labels, batched=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": { + "id": "wu_XrafjOLPC", + "outputId": "b9bd9c26-892e-45e8-eb58-b24c8e760d3f", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "1.0\n" + ] + } + ], + "source": [ + "# keep just sentences with the same length\n", + "sentences_to_evaluate_p2 = []\n", + "sentences_to_evaluate_true = []\n", + "\n", + "for i in range(len(p2_dataset)):\n", + " # keep the min len among the true and annotated sentence\n", + " l = min(len(p2_dataset['labels'][i]), len(true_ann_dataset['labels'][i]))\n", + " sentences_to_evaluate_p2.append(p2_dataset['labels'][i][:l])\n", + " sentences_to_evaluate_true.append(true_ann_dataset['labels'][i][:l])\n", + " # if len(p2_dataset['labels'][i]) != len(true_ann_dataset['labels'][i]):\n", + " # print(p2_dataset['tokens'][i])\n", + " # print(true_ann_dataset['tokens'][i])\n", + " # print(get_labels(([p2_dataset['labels'][i]], [true_ann_dataset['labels'][i]])))\n", + " # # print(true_ann_dataset['labels'][i])\n", + " # # sentences_to_evaluate_p2.append(p2_dataset['labels'][i])\n", + " # # sentences_to_evaluate_true.append(true_ann_dataset['labels'][i])\n", + "\n", + "print(len(sentences_to_evaluate_p2)/len(p2_dataset))" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": { + "id": "BvXAM4BrOLPC" + }, + "outputs": [], + "source": [ + "evaluator = BioEval()" + ] + }, + { + "cell_type": "code", + "source": [ + "# sentences_to_evaluate_p2[:2]\n", + "for sentence in sentences_to_evaluate_p2:\n", + " if len(sentence) == 0:\n", + " print('len000')\n" + ], + "metadata": { + "id": "FgrghkwqfrGo" + }, + "execution_count": 113, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": { + "id": "i3WlQ9nNOLPC" + }, + "outputs": [], + "source": [ + "pred_labels, true_labels = get_labels((sentences_to_evaluate_p2, sentences_to_evaluate_true))" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": { + "id": "50h006TSOLPC" + }, + "outputs": [], + "source": [ + "evaluator.evaluate_annotations(true_labels, pred_labels, do_lower=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": { + "id": "iYOfAO8qOLPK", + "outputId": "d630bfdc-faa4-4ba3-f817-a2885bc6e768", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'overall': {'acc': 0.6039,\n", + " 'strict': {'precision': 0.539911466514351,\n", + " 'recall': 0.5364642451759364,\n", + " 'f_score': 0.5381823357768131},\n", + " 'relax': {'precision': 0.6547194059688705,\n", + " 'recall': 0.6505391600454029,\n", + " 'f_score': 0.652622589139563}},\n", + " 'category': {'strict': {'condition': {'precision': 0.6026216555934638,\n", + " 'recall': 0.6669316375198728,\n", + " 'f_score': 0.6331478162437506},\n", + " 'measurement': {'precision': 0.14698162729658792,\n", + " 'recall': 0.19310344827586207,\n", + " 'f_score': 0.16691505216095381},\n", + " 'drug': {'precision': 0.562358276643991,\n", + " 'recall': 0.5598194130925508,\n", + " 'f_score': 0.5610859728506786},\n", + " 'procedure': {'precision': 0.3992248062015504,\n", + " 'recall': 0.329073482428115,\n", + " 'f_score': 0.36077057793345},\n", + " 'temporal': {'precision': 0.030303030303030304,\n", + " 'recall': 0.003367003367003367,\n", + " 'f_score': 0.006060606060606061},\n", + " 'person': {'precision': 0.053763440860215055,\n", + " 'recall': 0.03759398496240601,\n", + " 'f_score': 0.04424778761061946},\n", + " 'observation': {'precision': 0.016216216216216217,\n", + " 'recall': 0.018072289156626505,\n", + " 'f_score': 0.017094017094017092},\n", + " 'value': {'precision': 0.05555555555555555,\n", + " 'recall': 0.002849002849002849,\n", + " 'f_score': 0.005420054200542005},\n", + " 'device': {'precision': 0.32,\n", + " 'recall': 0.34782608695652173,\n", + " 'f_score': 0.3333333333333333}},\n", + " 'relax': {'condition': {'precision': 0.7141318010414797,\n", + " 'recall': 0.790341812400636,\n", + " 'f_score': 0.750306574851429},\n", + " 'measurement': {'precision': 0.25196850393700787,\n", + " 'recall': 0.3310344827586207,\n", + " 'f_score': 0.28614008941877794},\n", + " 'drug': {'precision': 0.6893424036281179,\n", + " 'recall': 0.6862302483069977,\n", + " 'f_score': 0.6877828054298643},\n", + " 'procedure': {'precision': 0.5271317829457365,\n", + " 'recall': 0.43450479233226835,\n", + " 'f_score': 0.4763572679509632},\n", + " 'temporal': {'precision': 0.5757575757575758,\n", + " 'recall': 0.06397306397306397,\n", + " 'f_score': 0.11515151515151514},\n", + " 'person': {'precision': 0.12903225806451613,\n", + " 'recall': 0.09022556390977443,\n", + " 'f_score': 0.10619469026548671},\n", + " 'observation': {'precision': 0.0918918918918919,\n", + " 'recall': 0.10240963855421686,\n", + " 'f_score': 0.09686609686609687},\n", + " 'value': {'precision': 0.7222222222222222,\n", + " 'recall': 0.037037037037037035,\n", + " 'f_score': 0.07046070460704607},\n", + " 'device': {'precision': 0.44,\n", + " 'recall': 0.4782608695652174,\n", + " 'f_score': 0.4583333333333333}}}}" + ] + }, + "metadata": {}, + "execution_count": 141 + } + ], + "source": [ + "evaluator.performance" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": { + "id": "vikGKa6fOLPK" + }, + "outputs": [], + "source": [ + "evaluator.save_evaluation('eval_paper_full_generative.json')" + ] + }, + { + "cell_type": "code", + "source": [ + "evaluator.get_counts()" + ], + "metadata": { + "id": "_nF89z1JiAqF", + "outputId": "94c401df-5c0a-46d7-b6f4-3a2b12aa39cd", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 142, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'expect': {'overall': 7048,\n", + " 'condition': 5032,\n", + " 'person': 133,\n", + " 'value': 351,\n", + " 'observation': 166,\n", + " 'drug': 443,\n", + " 'measurement': 290,\n", + " 'procedure': 313,\n", + " 'temporal': 297,\n", + " 'device': 23},\n", + " 'prediction': {'strict': {'overall': {'total': 7003,\n", + " 'true': 3781,\n", + " 'false': 3222},\n", + " 'condition': {'total': 5569, 'true': 3356, 'false': 2213},\n", + " 'measurement': {'total': 381, 'true': 56, 'false': 325},\n", + " 'drug': {'total': 441, 'true': 248, 'false': 193},\n", + " 'procedure': {'total': 258, 'true': 103, 'false': 155},\n", + " 'temporal': {'total': 33, 'true': 1, 'false': 32},\n", + " 'person': {'total': 93, 'true': 5, 'false': 88},\n", + " 'observation': {'total': 185, 'true': 3, 'false': 182},\n", + " 'value': {'total': 18, 'true': 1, 'false': 17},\n", + " 'device': {'total': 25, 'true': 8, 'false': 17}},\n", + " 'relax': {'overall': {'total': 7003, 'true': 4585, 'false': 2418},\n", + " 'condition': {'total': 5569, 'true': 3977, 'false': 1592},\n", + " 'measurement': {'total': 381, 'true': 96, 'false': 285},\n", + " 'drug': {'total': 441, 'true': 304, 'false': 137},\n", + " 'procedure': {'total': 258, 'true': 136, 'false': 122},\n", + " 'temporal': {'total': 33, 'true': 19, 'false': 14},\n", + " 'person': {'total': 93, 'true': 12, 'false': 81},\n", + " 'observation': {'total': 185, 'true': 17, 'false': 168},\n", + " 'value': {'total': 18, 'true': 13, 'false': 5},\n", + " 'device': {'total': 25, 'true': 11, 'false': 14}}}}" + ] + }, + "metadata": {}, + "execution_count": 142 + } + ] + }, + { + "cell_type": "code", + "source": [ + "evaluator.save_evaluation('drive/MyDrive/TER-LISN-2024/eval_paper_full_generative.json')" + ], + "metadata": { + "id": "zeN6oRIzL9I7" + }, + "execution_count": 144, + "outputs": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + }, + "colab": { + "provenance": [], + "gpuType": "T4", + "include_colab_link": true + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "009541513b8e451886782e457d7cd479": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_523cf83bffdc4d8bbe06c9d886e5d884", + "IPY_MODEL_0a508a2d17d04b76aa6bad327e25da96", + "IPY_MODEL_7fd41498666942149a04c076f61cb6ad", + "IPY_MODEL_32cfc02171c1420599bbbeca98ebfc3b" + ], + "layout": "IPY_MODEL_6ab04465b07747a592cb28f77c6b5e20" + } + }, + "519375173fe64735a4faccf127abcf90": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2379403cd2df4ffd9f7d4eecbf571d7e", + "placeholder": "", + "style": "IPY_MODEL_382eff5973b942678fde4a9c6e9c8150", + "value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>" + } + }, + "484017270bb646119bc605fccb88fa4e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_aec5500c07b54365ab252b5746e08127", + "placeholder": "", + "style": "IPY_MODEL_86ed1786dfcc49148bc65e88627a34f3", + "value": "" + } + }, + "23dc47bf61314784b7ffb42d995bbce9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "CheckboxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_36b52f9261ae4c589efc8faab5806509", + "style": "IPY_MODEL_8c0ca5e87a1243ba94d821d87dfd7cc1", + "value": true + } + }, + "7fdc12ed98be4101a7ff8d15272d5033": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_1d62a5d167c04e839152933688357dbe", + "style": "IPY_MODEL_20614482956a4d359d7e6470fe3b5236", + "tooltip": "" + } + }, + "683aa055aae842adabca4ee3fa9a16bf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b46a3ac13be24c04a0c47d424e54d256", + "placeholder": "", + "style": "IPY_MODEL_94885d557c64483bbcb842c570e380a5", + "value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>" + } + }, + "6ab04465b07747a592cb28f77c6b5e20": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "2379403cd2df4ffd9f7d4eecbf571d7e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "382eff5973b942678fde4a9c6e9c8150": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aec5500c07b54365ab252b5746e08127": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86ed1786dfcc49148bc65e88627a34f3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "36b52f9261ae4c589efc8faab5806509": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c0ca5e87a1243ba94d821d87dfd7cc1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1d62a5d167c04e839152933688357dbe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20614482956a4d359d7e6470fe3b5236": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "b46a3ac13be24c04a0c47d424e54d256": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "94885d557c64483bbcb842c570e380a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0ca2c9f7ad19437886ef4a9aa74cf952": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_50557c598d9246599d7e894137d2df26", + "placeholder": "", + "style": "IPY_MODEL_ab9a60b256554da0a101dc9d541cbb8c", + "value": "Connecting..." + } + }, + "50557c598d9246599d7e894137d2df26": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab9a60b256554da0a101dc9d541cbb8c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "523cf83bffdc4d8bbe06c9d886e5d884": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c72717e7d2714c7aa695cf5b6ba2481c", + "placeholder": "", + "style": "IPY_MODEL_45c84a726d5e470babfb03cd5b139de7", + "value": "Token is valid (permission: write)." + } + }, + "0a508a2d17d04b76aa6bad327e25da96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec182a1a030c46ac87b2fa998ea9d868", + "placeholder": "", + "style": "IPY_MODEL_22972fbed4cc4b408be8abe9f9bb2847", + "value": "Your token has been saved in your configured git credential helpers (store)." + } + }, + "7fd41498666942149a04c076f61cb6ad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_09fc71a94b2f4766a02b5879ba232e95", + "placeholder": "", + "style": "IPY_MODEL_da47463752ff4288a73b1802d37941aa", + "value": "Your token has been saved to /root/.cache/huggingface/token" + } + }, + "32cfc02171c1420599bbbeca98ebfc3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "LabelModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9e89840302da47e3a383888883bbadea", + "placeholder": "", + "style": "IPY_MODEL_5ecf0ca50841453d85a082217c033fae", + "value": "Login successful" + } + }, + "c72717e7d2714c7aa695cf5b6ba2481c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45c84a726d5e470babfb03cd5b139de7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec182a1a030c46ac87b2fa998ea9d868": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "22972fbed4cc4b408be8abe9f9bb2847": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "09fc71a94b2f4766a02b5879ba232e95": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da47463752ff4288a73b1802d37941aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9e89840302da47e3a383888883bbadea": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ecf0ca50841453d85a082217c033fae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1ca11a0dedb44e6897fd914763d6731d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b418a6bbce1346bd9c0076f2d31bad26", + "IPY_MODEL_b7975e8109d74252ae427c2507b70c2c", + "IPY_MODEL_f0af7ea71ed14275bb36b55c87d6c785" + ], + "layout": "IPY_MODEL_ddb109aa9fed447b9e8929f2ce49b8d2" + } + }, + "b418a6bbce1346bd9c0076f2d31bad26": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e57a33e6f4641bd85d68b6773657962", + "placeholder": "", + "style": "IPY_MODEL_901e5be78e494518924d3237c3398b09", + "value": "Loading checkpoint shards: 100%" + } + }, + "b7975e8109d74252ae427c2507b70c2c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4fdf171fbb704213a0df598adb0c918c", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_40c20831011e4706aedbe2ed73219dfd", + "value": 2 + } + }, + "f0af7ea71ed14275bb36b55c87d6c785": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83849f3935464b2ab0f77925aab9d7f3", + "placeholder": "", + "style": "IPY_MODEL_e7c31cc6d3a64a4fb911f3d2023ecfb1", + "value": " 2/2 [01:15<00:00, 35.11s/it]" + } + }, + "ddb109aa9fed447b9e8929f2ce49b8d2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6e57a33e6f4641bd85d68b6773657962": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "901e5be78e494518924d3237c3398b09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4fdf171fbb704213a0df598adb0c918c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40c20831011e4706aedbe2ed73219dfd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "83849f3935464b2ab0f77925aab9d7f3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e7c31cc6d3a64a4fb911f3d2023ecfb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a35141fd2544fd08d1c5748a16c28f6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d6e6a89659834daa88bcef28c1d5d220", + "IPY_MODEL_b4f30646efe04849afd1b45f50dd3931", + "IPY_MODEL_9a90159ea82b4c3f921839ea7b6f9c86" + ], + "layout": "IPY_MODEL_8698beb6d78342caaa49ea61c9ebcc58" + } + }, + "d6e6a89659834daa88bcef28c1d5d220": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5562bbdb7f064ba4867374297f2c7ef4", + "placeholder": "", + "style": "IPY_MODEL_f5f58531d6474340a7e5d4ccdc171969", + "value": "Map: 100%" + } + }, + "b4f30646efe04849afd1b45f50dd3931": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57e9591c1f1a4be58f8a826059e27d05", + "max": 1307, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e52d41b0f7084b83abfc2dce289e9757", + "value": 1307 + } + }, + "9a90159ea82b4c3f921839ea7b6f9c86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49662c4803d846d6bb15e8ba44e4b818", + "placeholder": "", + "style": "IPY_MODEL_a09956aac8fb4447b241f1dc646c6429", + "value": " 1307/1307 [00:00<00:00, 1412.20 examples/s]" + } + }, + "8698beb6d78342caaa49ea61c9ebcc58": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5562bbdb7f064ba4867374297f2c7ef4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f5f58531d6474340a7e5d4ccdc171969": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "57e9591c1f1a4be58f8a826059e27d05": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e52d41b0f7084b83abfc2dce289e9757": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "49662c4803d846d6bb15e8ba44e4b818": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a09956aac8fb4447b241f1dc646c6429": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "162bfe1f36444ce1861ceaf2c8f6a3f3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d33896d2c9c546e1b9d5cc12bb866d51", + "IPY_MODEL_af607d56eb2c4de88e84315ebf4e5bed", + "IPY_MODEL_0f469022363b4b0d96762dc3aafebffe" + ], + "layout": "IPY_MODEL_dc63518146884067aaebf37d682e83b5" + } + }, + "d33896d2c9c546e1b9d5cc12bb866d51": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_676f0e00bfba466ea183f41ba064ff95", + "placeholder": "", + "style": "IPY_MODEL_91796acd865b49e39500cbc7fdfa2e1e", + "value": "Map: 100%" + } + }, + "af607d56eb2c4de88e84315ebf4e5bed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48df188dce924c32b510d1ceb4d2450c", + "max": 1307, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_78810abaada343a998519b4cb128bf3a", + "value": 1307 + } + }, + "0f469022363b4b0d96762dc3aafebffe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f6c93a23a55413f86aa4778e7d2a6c3", + "placeholder": "", + "style": "IPY_MODEL_9b21d0ab5e874bf3aa723bb2114eef80", + "value": " 1307/1307 [00:00<00:00, 3328.06 examples/s]" + } + }, + "dc63518146884067aaebf37d682e83b5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "676f0e00bfba466ea183f41ba064ff95": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91796acd865b49e39500cbc7fdfa2e1e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "48df188dce924c32b510d1ceb4d2450c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78810abaada343a998519b4cb128bf3a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5f6c93a23a55413f86aa4778e7d2a6c3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b21d0ab5e874bf3aa723bb2114eef80": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file