[af3e0d]: / src / features / entity_recognition.py

Download this file

153 lines (129 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import pandas as pd
import numpy as np
from typing import List, Dict, Optional, Tuple, Set
from collections import defaultdict
from src.preprocessing.preprocessing import create_ordered_medical_pipeline
from src.utils.logger import get_logger
logger = get_logger(__name__)
class MedicalEntityRecognizer:
"""Medical entity recognition for clinical texts using a rule-based approach."""
def __init__(self, disease_category: Optional[str] = None):
"""Initialize the medical entity recognizer."""
self.disease_category = disease_category
self.logger = get_logger(self.__class__.__name__)
self.logger.info("Initialized rule-based medical entity recognizer (spaCy and thinc disabled)")
# Define entity categories based on exploratory data analysis (EDA)
self.entity_categories = {
'DISEASE': ['disease', 'syndrome', 'disorder', 'condition'],
'SYMPTOM': ['symptom', 'manifestation', 'sign', 'indication'],
'ANATOMY': ['muscle', 'nerve', 'brain', 'spine', 'respiratory'],
'MEDICATION': ['drug', 'medication', 'treatment', 'therapy'],
'MEASUREMENT': ['score', 'scale', 'rating', 'assessment']
}
# Disease-specific entities from EDA
self.disease_entities = {
'ALS': {
'symptoms': ['respiratory decline', 'muscle weakness', 'bulbar dysfunction'],
'measurements': ['FVC', 'ALSFRS-R'],
'anatomy': ['motor neurons', 'respiratory muscles']
},
'OCD': {
'symptoms': ['intrusive thoughts', 'compulsions', 'anxiety'],
'measurements': ['Y-BOCS', 'severity scale'],
'behaviors': ['ritual', 'repetitive behavior']
},
'Parkinson': {
'symptoms': ['tremor', 'rigidity', 'bradykinesia'],
'measurements': ['UPDRS', 'Hoehn and Yahr'],
'anatomy': ['substantia nigra', 'basal ganglia']
},
'Dementia': {
'symptoms': ['memory loss', 'cognitive decline', 'confusion'],
'measurements': ['MMSE', 'CDR'],
'domains': ['memory', 'executive function', 'behavior']
},
'Scoliosis': {
'anatomy': ['spine', 'vertebrae', 'thoracic', 'lumbar'],
'measurements': ['Cobb angle', 'curve degree'],
'procedures': ['fusion', 'correction', 'brace']
}
}
# Initialize preprocessing pipeline
self.preprocessor = create_ordered_medical_pipeline(disease_category)
def extract_entities(self, text: str) -> Dict[str, List[str]]:
"""
Extract medical entities from text using a simple rule-based approach.
The method searches for keywords within the preprocessed text.
"""
# Preprocess text
processed = self.preprocessor.process(text)
if isinstance(processed, tuple):
processed = processed[0]
processed_lower = processed.lower()
# Extract entities based on keyword matching
entities = defaultdict(list)
for category, terms in self.entity_categories.items():
for term in terms:
if term in processed_lower:
entities[category].append(term)
# Get disease-specific entities
if self.disease_category:
disease_specific = self._extract_disease_specific_entities(processed_lower)
for category, terms in disease_specific.items():
entities[category].extend(terms)
return dict(entities)
def _extract_disease_specific_entities(self, text: str) -> Dict[str, List[str]]:
"""Extract disease-specific entities using keyword matching."""
entities = defaultdict(list)
if self.disease_category in self.disease_entities:
disease_terms = self.disease_entities[self.disease_category]
for category, terms in disease_terms.items():
for term in terms:
if term.lower() in text:
entities[f"{self.disease_category}_{category}"].append(term)
return dict(entities)
def get_entity_features(self, text: str) -> Dict[str, float]:
"""Get numerical features based on entity analysis."""
entities = self.extract_entities(text)
total_entities = sum(len(e) for e in entities.values())
features = {
'total_entities': total_entities,
'unique_entity_types': len(entities)
}
# Calculate density for each category
words = text.split()
total_words = len(words)
for category in self.entity_categories:
if category in entities:
density = len(entities[category]) / total_words if total_words > 0 else 0.0
features[f'{category.lower()}_density'] = density
else:
features[f'{category.lower()}_density'] = 0.0
# Add disease-specific features
if self.disease_category:
disease_entities = {k: v for k, v in entities.items() if k.startswith(self.disease_category)}
features['disease_specific_entities'] = sum(len(e) for e in disease_entities.values())
return features
# Example usage and testing
if __name__ == "__main__":
# Test texts
test_texts = [
"""Patient with ALS showing respiratory decline. FVC = 65% ± 5%.
ALSFRS-R score decreased from 42 to 38 over 3 months.""",
"""Subject with severe ALS symptoms. Respiratory function declined.
Motor function significantly impaired. Bulbar onset observed."""
]
# Create entity recognizer
recognizer = MedicalEntityRecognizer(disease_category='ALS')
# Test entity extraction
logger.info("\nTesting entity extraction:")
for i, text in enumerate(test_texts, 1):
logger.info(f"\nText {i}:")
entities = recognizer.extract_entities(text)
for category, terms in entities.items():
logger.info(f"{category}: {', '.join(terms)}")
# Test feature extraction
logger.info("\nTesting feature extraction:")
features = recognizer.get_entity_features(test_texts[0])
for feature, value in features.items():
logger.info(f"{feature}: {value:.4f}")