[46c9de]: / src / features / word_embeddings.py

Download this file

198 lines (167 with data), 6.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
from typing import List, Dict, Optional, Union, Tuple
from gensim.models import Word2Vec, FastText
from gensim.models.callbacks import CallbackAny2Vec
from src.preprocessing.preprocessing import create_ordered_medical_pipeline
from src.utils.logger import get_logger
from collections import defaultdict
logger = get_logger(__name__)
class EpochLogger(CallbackAny2Vec):
"""Callback to log training progress"""
def __init__(self):
self.epoch = 0
self.logger = get_logger(self.__class__.__name__)
def on_epoch_end(self, model):
self.logger.info(f"Finished epoch {self.epoch}")
self.epoch += 1
class MedicalWordEmbeddings:
"""
Domain-specific word embeddings for medical text.
Supports both Word2Vec and FastText models.
"""
def __init__(self,
model_type: str = 'word2vec',
embedding_dim: int = 100,
window_size: int = 5,
min_count: int = 2,
disease_category: Optional[str] = None):
"""Initialize word embeddings model."""
self.model_type = model_type.lower()
self.embedding_dim = embedding_dim
self.window_size = window_size
self.min_count = min_count
self.disease_category = disease_category
self.model = None
self.logger = get_logger(self.__class__.__name__)
# Initialize preprocessing pipeline
self.preprocessor = create_ordered_medical_pipeline(
disease_category=disease_category
)
def preprocess_texts(self, texts: List[str]) -> List[List[str]]:
"""Preprocess texts into tokens."""
processed_texts = []
for text in texts:
# Apply preprocessing
result = self.preprocessor.process(text)
processed_text = result[0] if isinstance(result, tuple) else result
# Tokenize
tokens = processed_text.split()
processed_texts.append(tokens)
return processed_texts
def train(self, texts: List[str], **kwargs):
"""Train word embeddings model."""
# Preprocess texts
processed_texts = self.preprocess_texts(texts)
# Initialize model
epoch_logger = EpochLogger()
if self.model_type == 'word2vec':
self.model = Word2Vec(
sentences=processed_texts,
vector_size=self.embedding_dim,
window=self.window_size,
min_count=self.min_count,
workers=4,
callbacks=[epoch_logger],
**kwargs
)
elif self.model_type == 'fasttext':
self.model = FastText(
sentences=processed_texts,
vector_size=self.embedding_dim,
window=self.window_size,
min_count=self.min_count,
workers=4,
callbacks=[epoch_logger],
**kwargs
)
else:
raise ValueError(f"Unknown model type: {self.model_type}")
self.logger.info(f"Trained {self.model_type} model with vocabulary size: {len(self.model.wv.key_to_index)}")
def get_document_embedding(self, text: str, method: str = 'mean') -> np.ndarray:
"""Get embedding for a document."""
if hasattr(text, 'text'):
text = text.text
# Preprocess text
processed = self.preprocessor.process(text)
if isinstance(processed, tuple):
processed = processed[0]
tokens = processed.split()
# Get word vectors
vectors = []
weights = []
for token in tokens:
try:
if self.model_type == 'word2vec':
vector = self.model.wv[token]
else:
vector = self.model.wv.get_vector(token)
vectors.append(vector)
# Calculate weight based on medical term importance
if token.lower() in self.preprocessor.context.preserved_terms:
weights.append(2.0) # Higher weight for medical terms
else:
weights.append(1.0)
except KeyError:
continue
if not vectors:
return np.zeros(self.embedding_dim)
# Aggregate vectors
if method == 'weighted':
weights = np.array(weights)
weights = weights / weights.sum() # Normalize weights
return np.average(vectors, axis=0, weights=weights)
else:
return np.mean(vectors, axis=0)
def get_similar_terms(self, term: str, n: int = 10) -> List[Tuple[str, float]]:
"""Get similar terms for a given medical term."""
try:
return self.model.wv.most_similar(term, topn=n)
except KeyError:
self.logger.warning(f"Term not found in vocabulary: {term}")
return []
def save_model(self, path: str):
"""Save the model."""
if self.model is not None:
self.model.save(path)
self.logger.info(f"Model saved to {path}")
else:
raise ValueError("No model to save")
def load_model(self, path: str):
"""Load a saved model."""
if self.model_type == 'word2vec':
self.model = Word2Vec.load(path)
else:
self.model = FastText.load(path)
self.logger.info(f"Model loaded from {path}")
# Example usage and testing
if __name__ == "__main__":
# Test texts
test_texts = [
"""Patient with ALS showing respiratory decline. FVC = 65% ± 5%.
ALSFRS-R score decreased from 42 to 38 over 3 months.""",
"""Subject with severe ALS symptoms. Respiratory function declined.
Motor function significantly impaired.""",
"""ALS patient showing bulbar symptoms. FVC measurements indicate
respiratory weakness. ALSFRS-R score: 35."""
]
# Create and train embeddings model
embeddings = MedicalWordEmbeddings(
model_type='fasttext',
embedding_dim=100,
disease_category='ALS'
)
# Train model
embeddings.train(test_texts)
# Test document embedding
test_doc = "New ALS patient with respiratory symptoms"
doc_embedding = embeddings.get_document_embedding(test_doc, method='weighted')
# Print results
logger.info(f"\nDocument embedding shape: {doc_embedding.shape}")
# Test similar terms
similar_terms = embeddings.get_similar_terms('respiratory')
logger.info("\nSimilar terms to 'respiratory':")
for term, similarity in similar_terms:
logger.info(f"- {term}: {similarity:.4f}")
# Test model saving/loading
embeddings.save_model('medical_embeddings.model')
embeddings.load_model('medical_embeddings.model')