[46c9de]: / src / data / data_pipeline.py

Download this file

170 lines (142 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import pandas as pd
from typing import Dict, List, Tuple, Optional, Generator
from sklearn.model_selection import StratifiedKFold
from sklearn.utils import shuffle
import joblib
from pathlib import Path
import os
from src.utils.logger import get_logger
logger = get_logger(__name__)
class DataPipeline:
"""
Data pipeline for model training with advanced data handling capabilities
Features:
- Stratified sampling
- Cross-validation splits
- Data caching
- Batch generation
"""
def __init__(self,
data_dir: str,
batch_size: int = 32,
n_splits: int = 5,
cache_dir: Optional[str] = None,
random_state: int = 42):
# Initialize data pipeline
self.data_dir = Path(data_dir)
self.batch_size = batch_size
self.n_splits = n_splits
self.cache_dir = Path(cache_dir) if cache_dir else None
self.random_state = random_state
self.logger = get_logger(self.__class__.__name__)
# Load prepared data
self.load_data()
# Initialize cross-validation splitter
self.cv = StratifiedKFold(
n_splits=self.n_splits,
shuffle=True,
random_state=self.random_state
)
def load_data(self):
"""Load prepared data from files"""
try:
# Load features and labels for each split
self.data = {}
for split in ['train', 'val', 'test']:
features_path = self.data_dir / f'{split}_features.npy'
labels_path = self.data_dir / f'{split}_labels.npy'
features = np.load(features_path)
labels = np.load(labels_path)
self.data[split] = (features, labels)
# Load metadata
metadata_path = self.data_dir / 'metadata.joblib'
self.metadata = joblib.load(metadata_path)
self.logger.info("Data loaded successfully")
self._log_data_info()
except Exception as e:
self.logger.error(f"Error loading data: {str(e)}")
raise
def _log_data_info(self):
"""Log information about loaded data"""
for split, (features, labels) in self.data.items():
self.logger.info(f"\n{split.capitalize()} set:")
self.logger.info(f"Features shape: {features.shape}")
self.logger.info(f"Labels shape: {labels.shape}")
self.logger.info(f"Classes: {np.unique(labels)}")
def get_cv_splits(self) -> Generator[Tuple[np.ndarray, np.ndarray], None, None]:
"""Generate cross-validation splits"""
features, labels = self.data['train']
for fold, (train_idx, val_idx) in enumerate(self.cv.split(features, labels)):
self.logger.info(f"Generating split for fold {fold + 1}/{self.n_splits}")
yield train_idx, val_idx
def get_batch_generator(self,
split: str,
batch_size: Optional[int] = None,
shuffle_data: bool = True) -> Generator[Tuple[np.ndarray, np.ndarray], None, None]:
"""Generate batches of data"""
features, labels = self.data[split]
batch_size = batch_size if batch_size is not None else self.batch_size
# Create cache key if caching is enabled
if self.cache_dir:
cache_key = f"{split}_batch_{batch_size}"
if not self._check_cache(cache_key):
# Save the original, unshuffled data to cache.
self._save_to_cache(cache_key, features, labels)
else:
features, labels = self._load_from_cache(cache_key)
# Shuffle if requested (the caching preserves the original order)
if shuffle_data:
features, labels = shuffle(features, labels, random_state=self.random_state)
num_samples = len(features)
num_batches = (num_samples + batch_size - 1) // batch_size
for i in range(num_batches):
start_idx = i * batch_size
end_idx = min(start_idx + batch_size, num_samples)
yield features[start_idx:end_idx], labels[start_idx:end_idx]
def get_all_data(self, split: str) -> Tuple[np.ndarray, np.ndarray]:
"""Get all data for a split"""
return self.data[split]
def _check_cache(self, key: str) -> bool:
"""Check if data exists in cache"""
if not self.cache_dir:
return False
features_path = self.cache_dir / f"{key}_features.npy"
labels_path = self.cache_dir / f"{key}_labels.npy"
return features_path.exists() and labels_path.exists()
def _load_from_cache(self, key: str) -> Tuple[np.ndarray, np.ndarray]:
"""Load data from cache"""
features = np.load(self.cache_dir / f"{key}_features.npy")
labels = np.load(self.cache_dir / f"{key}_labels.npy")
self.logger.info(f"Loaded cache with key: {key}")
return features, labels
def _save_to_cache(self, key: str, features: np.ndarray, labels: np.ndarray):
"""Save data to cache"""
if self.cache_dir:
self.cache_dir.mkdir(parents=True, exist_ok=True)
np.save(self.cache_dir / f"{key}_features.npy", features)
np.save(self.cache_dir / f"{key}_labels.npy", labels)
self.logger.info(f"Saved cache with key: {key}")
# Example usage and testing
if __name__ == "__main__":
# Initialize pipeline - adjust paths as needed
pipeline = DataPipeline(
data_dir='../../data/prepared_data',
batch_size=32,
n_splits=5,
cache_dir='../../data/cache'
)
# Test cross-validation splits
logger.info("\nTesting cross-validation splits:")
for fold, (train_idx, val_idx) in enumerate(pipeline.get_cv_splits()):
logger.info(f"Fold {fold + 1}:")
logger.info(f"Training samples: {len(train_idx)}")
logger.info(f"Validation samples: {len(val_idx)}")
# Test batch generator
logger.info("\nTesting batch generator:")
for split in ['train', 'val', 'test']:
batch_gen = pipeline.get_batch_generator(split)
num_batches = 0
for features_batch, labels_batch in batch_gen:
num_batches += 1
logger.info(f"{split.capitalize()} batches generated: {num_batches}")