[46c9de]: / data / data_preparation.py

Download this file

237 lines (194 with data), 8.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import joblib
from pathlib import Path
import pandas as pd
import numpy as np
from typing import Tuple, List, Dict
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from src.preprocessing.preprocessing import create_ordered_medical_pipeline
from src.features.tfidf_features import MedicalTextFeatureExtractor
from src.features.word_embeddings import MedicalWordEmbeddings
from src.features.entity_recognition import MedicalEntityRecognizer
from src.features.text_statistics import TextStatisticsExtractor
from src.utils.logger import get_logger
logger = get_logger(__name__)
class DataPreparator:
"""Prepare data for model development"""
def __init__(self,
test_size: float = 0.15,
val_size: float = 0.15,
random_state: int = 42):
self.test_size = test_size
self.val_size = val_size
self.random_state = random_state
self.logger = get_logger(self.__class__.__name__)
# Initialize feature extractors
self.feature_extractors = {
'tfidf': MedicalTextFeatureExtractor(),
'embeddings': MedicalWordEmbeddings(model_type='fasttext'),
'entities': MedicalEntityRecognizer(),
'statistics': TextStatisticsExtractor()
}
def load_data(self, file_path: str) -> pd.DataFrame:
"""Load and validate the dataset"""
try:
df = pd.read_csv(file_path)
self.logger.info(f"Loaded dataset with shape: {df.shape}")
# Validate required columns
required_columns = ['description', 'label']
if not all(col in df.columns for col in required_columns):
raise ValueError(f"Missing required columns: {required_columns}")
return df
except Exception as e:
self.logger.error(f"Error loading data: {str(e)}")
raise
def split_data(self, df: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Split data into train, validation, and test sets"""
# First split: separate test set
train_val, test = train_test_split(
df,
test_size=self.test_size,
stratify=df['label'],
random_state=self.random_state
)
# Second split: separate validation set
val_size_adjusted = self.val_size / (1 - self.test_size)
train, val = train_test_split(
train_val,
test_size=val_size_adjusted,
stratify=train_val['label'],
random_state=self.random_state
)
self.logger.info(f"Data split sizes - Train: {len(train)}, Val: {len(val)}, Test: {len(test)}")
return train, val, test
def extract_features(self, texts: List[str], feature_types: List[str]) -> np.ndarray:
"""Extract and combine features"""
all_features = []
for feature_type in feature_types:
if feature_type not in self.feature_extractors:
raise ValueError(f"Unknown feature type: {feature_type}")
extractor = self.feature_extractors[feature_type]
if feature_type == 'tfidf':
# Check if the TF-IDF vectorizer is already fitted. If not, fit it.
if not hasattr(extractor.vectorizer, 'vocabulary_'):
features, _ = extractor.fit_transform(texts)
else:
features, _ = extractor.transform(texts)
elif feature_type == 'embeddings':
features = np.vstack([
extractor.get_document_embedding(text, method='weighted')
for text in texts
])
elif feature_type == 'entities':
features = np.vstack([
list(extractor.get_entity_features(text).values())
for text in texts
])
else: # statistics
features = np.vstack([
extractor.get_feature_vector(text)
for text in texts
])
all_features.append(features)
return np.hstack(all_features)
def _prepare_data_internal(self, file_path: str, feature_types: List[str]) -> Dict:
"""Internal method to load, split, and prepare data."""
# Load data
df = self.load_data(file_path)
# Split data
train_df, val_df, test_df = self.split_data(df)
# Extract features
train_features = self.extract_features(train_df['description'].tolist(), feature_types)
val_features = self.extract_features(val_df['description'].tolist(), feature_types)
test_features = self.extract_features(test_df['description'].tolist(), feature_types)
# Prepare labels
label_encoder = LabelEncoder()
train_labels = label_encoder.fit_transform(train_df['label'])
val_labels = label_encoder.transform(val_df['label'])
test_labels = label_encoder.transform(test_df['label'])
prepared_data = {
'train': (train_features, train_labels),
'val': (val_features, val_labels),
'test': (test_features, test_labels),
'label_encoder': label_encoder,
'feature_types': feature_types
}
self.logger.info("Data preparation completed successfully")
return prepared_data
def save_prepared_data(self, prepared_data: Dict, output_dir: str):
"""Save prepared data to files"""
# Create output directory if it doesn't exist
Path(output_dir).mkdir(parents=True, exist_ok=True)
# Save features and labels for each split
for split_name in ['train', 'val', 'test']:
features, labels = prepared_data[split_name]
# Save features
np.save(
os.path.join(output_dir, f'{split_name}_features.npy'),
features
)
# Save labels
np.save(
os.path.join(output_dir, f'{split_name}_labels.npy'),
labels
)
# Save metadata
metadata = {
'label_encoder': prepared_data['label_encoder'],
'feature_types': prepared_data['feature_types']
}
joblib.dump(
metadata,
os.path.join(output_dir, 'metadata.joblib')
)
self.logger.info(f"Saved prepared data to {output_dir}")
def load_prepared_data(self, input_dir: str) -> Dict:
"""Load prepared data from files"""
prepared_data = {}
# Load features and labels for each split
for split_name in ['train', 'val', 'test']:
features = np.load(
os.path.join(input_dir, f'{split_name}_features.npy')
)
labels = np.load(
os.path.join(input_dir, f'{split_name}_labels.npy')
)
prepared_data[split_name] = (features, labels)
# Load metadata
metadata = joblib.load(
os.path.join(input_dir, 'metadata.joblib')
)
prepared_data.update(metadata)
self.logger.info(f"Loaded prepared data from {input_dir}")
return prepared_data
def prepare_data(self,
file_path: str,
output_dir: str,
feature_types: List[str] = ['tfidf', 'statistics']) -> Dict:
"""Main method to prepare data for modeling"""
# Load and prepare data internally
prepared_data = self._prepare_data_internal(file_path, feature_types)
# Save prepared data
self.save_prepared_data(prepared_data, output_dir)
return prepared_data
if __name__ == "__main__":
# Data preparation
preparator = DataPreparator()
# Prepare and save data
prepared_data = preparator.prepare_data(
file_path='trials.csv',
output_dir='prepared_data',
feature_types=['tfidf', 'statistics']
)
# Load prepared data
loaded_data = preparator.load_prepared_data('prepared_data')
# Verify data
for split_name in ['train', 'val', 'test']:
original_features, original_labels = prepared_data[split_name]
loaded_features, loaded_labels = loaded_data[split_name]
assert np.array_equal(original_features, loaded_features)
assert np.array_equal(original_labels, loaded_labels)
logger.info(rf"\n{split_name.capitalize()} set loaded successfully:")
logger.info(rf"Features shape: {loaded_features.shape}")
logger.info(rf"Labels shape: {loaded_labels.shape}")