[44995b]: / run.py

Download this file

1198 lines (944 with data), 52.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
import pandas as pd
import matplotlib.pyplot as plt
import re
import time
import warnings
import numpy as np
from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import normalize
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.manifold import TSNE
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, log_loss
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import SGDClassifier
from imblearn.over_sampling import SMOTE
from collections import Counter
from scipy.sparse import hstack
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn import StratifiedKFold
from collections import Counter, defaultdict
from sklearn.calibration import CalibratedClassifierCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
import math
from sklearn.metrics import normalized_mutual_info_score
from sklearn.ensemble import RandomForestClassifier
warnings.filterwarnings("ignore")
from mlxtend.classifier import StackingClassifier
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
# Loading training_variants. A comma seperated file
data_variants = pd.read_csv('training/training_variants')
# Loading training_text. Is seperated by ||
data_text =pd.read_csv("training/training_text",sep="\|\|",engine="python",names=["ID","TEXT"],skiprows=1)
# basic look ahead for data_variants
data_variants.head()
# to classify cancer, we need gene, variants and research paper (text)
# ID --> common, same value in both data_variants & data_text for linking (merging dataframe)
# gene --> genetic mutation location
# variation --> aminoacid change for respective mutations
# class --> 1-9, target classes i,e genetic mutation has been classified on
# in data_variants, text is missing. text is present in data_text dataframe
data_variants.info()
data_variants.describe()
data_variants.columns
data_variants.shape
# basic look ahead for data_text
data_text.head()
# text --> huge text because research paper
data_text.info()
# missing value exists
data_text.columns
data_text.shape
# target classes
data_variants.Class.unique()
# multiclass classification problem
'''
important things before modelling:
1. Since it is medical problem, errors are costly
so have to return outcome in probability.
p(y=2|a1) = 0.99 --> OK
p(y=2|a1) = 0.5 --> NOT OK because probability is ambigous. In this case, have to look for more evidences or reason
2. Interpretability:
why 0.5 ? why 0.99 ? provide evidences for probability value
* few ML models are very good at interpretability such as Naive bayes, decision tree, logistic regression, linear SVM
* few ML models are not good at interpretability such as RBF and SVM
3. Latency:
* OK to take few sec/min for output
* NOT OK to take in hours for output
'''
# data_text has text (i,e research paper), cannot feed raw text to model
# so convert to a format that model understands
# numbers, stopwords, multiple spaces, special chars are not relevant so lets remove
stop_words = set(stopwords.words('english'))
def data_text_preprocess(total_text, ind, col):
# Remove int values from text data as that might not be imp
if type(total_text) is not int:
string = ""
# replacing all special char with space
total_text = re.sub('[^a-zA-Z0-9\n]', ' ', str(total_text))
# replacing multiple spaces with single space
total_text = re.sub('\s+',' ', str(total_text))
# bring whole text to same lower-case scale.
total_text = total_text.lower()
for word in total_text.split():
# if the word is a not a stop word then retain that word from text
if not word in stop_words:
string += word + " "
data_text[col][ind] = string
for index, row in data_text.iterrows():
if type(row['TEXT']) is str:
data_text_preprocess(row['TEXT'], index, 'TEXT')
# data preprocessing is completed
# lets merge dataframes based on ID
result = pd.merge(data_variants, data_text,on='ID', how='left')
result.head()
# check for missing values
result[result.isnull().any(axis=1)]
# 5 rows of missing values, so lets impute by conacatinating gene + variant values
result.loc[result['TEXT'].isnull(),'TEXT'] = result['Gene'] +' '+result['Variation']
# cross check
result[result.isnull().any(axis=1)]
# Split dataset into training, test & validation data
y_true = result['Class'].values
result.Gene = result.Gene.str.replace('\s+', '_')
result.Variation = result.Variation.str.replace('\s+', '_')
# Splitting the data into train and test set
X_train, test_df, y_train, y_test = train_test_split(result, y_true, stratify=y_true, test_size=0.2)
# split the train data now into train validation and cross validation
train_df, cv_df, y_train, y_cv = train_test_split(X_train, y_train, stratify=y_train, test_size=0.2)
print('Number of data points in train data:', train_df.shape[0])
print('Number of data points in test data:', test_df.shape[0])
print('Number of data points in cross validation data:', cv_df.shape[0])
# has data distributed properly ??
train_class_distribution = train_df['Class'].value_counts()
test_class_distribution = test_df['Class'].value_counts()
cv_class_distribution = cv_df['Class'].value_counts()
# lets viz
# viz for train class distribution
my_colors = 'rgbkymc'
train_class_distribution.plot(kind='bar')
plt.xlabel('Class')
plt.ylabel(' Number of Data points per Class')
plt.title('Distribution of yi in train data')
plt.grid()
plt.show()
# lets look in percentage form
sorted_yi = np.argsort(-train_class_distribution.values)
for i in sorted_yi:
print('Number of data points in class', i+1, ':',train_class_distribution.values[i], '(', np.round((train_class_distribution.values[i]/train_df.shape[0]*100), 3), '%)')
# viz for test class distribution
my_colors = 'rgbkymc'
test_class_distribution.plot(kind='bar')
plt.xlabel('Class')
plt.ylabel('Number of Data points per Class')
plt.title('Distribution of yi in test data')
plt.grid()
plt.show()
# lets look in percentage form
sorted_yi = np.argsort(-test_class_distribution.values)
for i in sorted_yi:
print('Number of data points in class', i+1, ':',test_class_distribution.values[i], '(', np.round((test_class_distribution.values[i]/test_df.shape[0]*100), 3), '%)')
# viz for cross validation set
my_colors = 'rgbkymc'
cv_class_distribution.plot(kind='bar')
plt.xlabel('Class')
plt.ylabel('Data points per Class')
plt.title('Distribution of yi in cross validation data')
plt.grid()
plt.show()
# lets look in percentage form
sorted_yi = np.argsort(-train_class_distribution.values)
for i in sorted_yi:
print('Number of data points in class', i+1, ':',cv_class_distribution.values[i], '(', np.round((cv_class_distribution.values[i]/cv_df.shape[0]*100), 3), '%)')
# distribution must happen in right distribution
'''
what is the evaluation metric ?
from kaggle page, multi class log loss is the evaluation metric
log loss ?
* more the prediction value (prediction probability), log loss is lower
* if the prediction is ambigious, log loss penalizes
* log loss = 0 --> perfect model, which is not the case in real world
* log loss lies between zero to infinity [0,infinity]
1 problem:
* in accuracy score evaluation metrics: 0 - 1 is the range where 1 is the best and 0 is the worst
* in AUC evaluation metrics: 0 - 1 is the range where 1 is the best and 0 is the worst
BUT
log loss values range between 0 to infinity
how do we know the infinity value is good or bad ??
1 method is:
random model --> worst model --> compute log loss (ex: 3)
random model --> compute log loss (ex: 1.5)
1.5 given model is better than 3
how do we generate random model ?
* here working with probability.
* summazation all the probability would be 1
'''
# build random model
# 9 classes exists, so create 9 random numbers such that thier sum is equivalent to 1
# because sum of probability of all the 9 classes must be equivalent to 1
test_data_len = test_df.shape[0]
cv_data_len = cv_df.shape[0]
# CV set error
cv_predicted_y = np.zeros((cv_data_len,9))
for i in range(cv_data_len):
rand_probs = np.random.rand(1,9) # randomly generate numbers between 1-9
cv_predicted_y[i] = ((rand_probs/sum(sum(rand_probs)))[0]) # summazation equals to 1
print("Log loss on Cross Validation Data using Random Model",log_loss(y_cv,cv_predicted_y, eps=1e-15))
# Log loss on Cross Validation Data using Random Model 2.491130932423048
# test-set error
test_predicted_y = np.zeros((test_data_len,9))
for i in range(test_data_len):
rand_probs = np.random.rand(1,9)
test_predicted_y[i] = ((rand_probs/sum(sum(rand_probs)))[0])
print("Log loss on Test Data using Random Model",log_loss(y_test,test_predicted_y, eps=1e-15))
# Log loss on Test Data using Random Model 2.531934856356048
# Lets get the index of max probablity
predicted_y =np.argmax(test_predicted_y, axis=1)
# index value ranges from 0-8, our problem statement has from 1-9 so lets update it
predicted_y = predicted_y + 1
# confusion matrix
C = confusion_matrix(y_test, predicted_y)
labels = [1,2,3,4,5,6,7,8,9]
plt.figure(figsize=(20,7))
sns.heatmap(C, annot=True, cmap="YlGnBu", fmt=".3f", xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.show()
# precision matrix
B =(C/C.sum(axis=0))
plt.figure(figsize=(20,7))
sns.heatmap(B, annot=True, cmap="YlGnBu", fmt=".3f", xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.show()
# recall matrix
A =(((C.T)/(C.sum(axis=1))).T)
plt.figure(figsize=(20,7))
sns.heatmap(A, annot=True, cmap="YlGnBu", fmt=".3f", xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.show()
# evaluate gene column
# is gene column important for target feature ?
# if so then convert category to numeric conversions
unique_genes = train_df['Gene'].value_counts()
print('Number of Unique Genes :', unique_genes.shape[0])
# the top 10 genes that occured most
print(unique_genes.head(10))
unique_genes.shape[0]
# viz of cumulative distribution of unique gene values
s = sum(unique_genes.values);
h = unique_genes.values/s;
c = np.cumsum(h)
plt.plot(c,label='Cumulative distribution of Genes')
plt.grid()
plt.legend()
plt.show()
# top 50 values are contributing to 75% of data
'''
lets encode
1. one-hot encoding. creates lot of features --> problem in some cases
2. response encoding (mean imputation, ex: average height of indians are 5.5)
same way response encoding in this case would be:
* for 1 row, we'll create 9 columns
* in 9 columns, the probability of gene occurance w.r.t that row would be saved
'''
# let's use both encoding techniques and check which one works better
# 1-hot encoding on gene feature
gene_vectorizer = CountVectorizer()
train_gene_feature_onehotCoding = gene_vectorizer.fit_transform(train_df['Gene'])
test_gene_feature_onehotCoding = gene_vectorizer.transform(test_df['Gene'])
cv_gene_feature_onehotCoding = gene_vectorizer.transform(cv_df['Gene'])
train_gene_feature_onehotCoding.shape
# (2124,234)
# response encoding on gene feature
# code for response coding with Laplace smoothing.
# alpha : used for laplace smoothing
# feature: ['gene', 'variation']
# df: ['train_df', 'test_df', 'cv_df']
# algorithm
# ----------
# Consider all unique values and the number of occurances of given feature in train data dataframe
# build a vector (1*9) , the first element = (number of times it occured in class1 + 10*alpha / number of time it occurred in total data+90*alpha)
# gv_dict is like a look up table, for every gene it store a (1*9) representation of it
# for a value of feature in df:
# if it is in train data:
# we add the vector that was stored in 'gv_dict' look up table to 'gv_fea'
# if it is not there is train:
# we add [1/9, 1/9, 1/9, 1/9,1/9, 1/9, 1/9, 1/9, 1/9] to 'gv_fea'
# return 'gv_fea'
# ----------------------
# get_gv_fea_dict: Get Gene varaition Feature Dict
def get_gv_fea_dict(alpha, feature, df):
# value_count: it contains a dict like
# print(train_df['Gene'].value_counts())
# output:
# {BRCA1 174
# TP53 106
# EGFR 86
# BRCA2 75
# PTEN 69
# KIT 61
# BRAF 60
# ERBB2 47
# PDGFRA 46
# ...}
# print(train_df['Variation'].value_counts())
# output:
# {
# Truncating_Mutations 63
# Deletion 43
# Amplification 43
# Fusions 22
# Overexpression 3
# E17K 3
# Q61L 3
# S222D 2
# P130S 2
# ...
# }
value_count = train_df[feature].value_counts()
# gv_dict : Gene Variation Dict, which contains the probability array for each gene/variation
gv_dict = dict()
# denominator will contain the number of time that particular feature occured in whole data
for i, denominator in value_count.items():
# vec will contain (p(yi==1/Gi) probability of gene/variation belongs to perticular class
# vec is 9 diamensional vector
vec = []
for k in range(1,10):
# print(train_df.loc[(train_df['Class']==1) & (train_df['Gene']=='BRCA1')])
# ID Gene Variation Class
# 2470 2470 BRCA1 S1715C 1
# 2486 2486 BRCA1 S1841R 1
# 2614 2614 BRCA1 M1R 1
# 2432 2432 BRCA1 L1657P 1
# 2567 2567 BRCA1 T1685A 1
# 2583 2583 BRCA1 E1660G 1
# 2634 2634 BRCA1 W1718L 1
# cls_cnt.shape[0] will return the number of rows
cls_cnt = train_df.loc[(train_df['Class']==k) & (train_df[feature]==i)]
# cls_cnt.shape[0](numerator) will contain the number of time that particular feature occured in whole data
vec.append((cls_cnt.shape[0] + alpha*10)/ (denominator + 90*alpha))
# we are adding the gene/variation to the dict as key and vec as value
gv_dict[i]=vec
return gv_dict
# Get Gene variation feature
def get_gv_feature(alpha, feature, df):
# print(gv_dict)
# {'BRCA1': [0.20075757575757575, 0.03787878787878788, 0.068181818181818177, 0.13636363636363635, 0.25, 0.19318181818181818, 0.03787878787878788, 0.03787878787878788, 0.03787878787878788],
# 'TP53': [0.32142857142857145, 0.061224489795918366, 0.061224489795918366, 0.27040816326530615, 0.061224489795918366, 0.066326530612244902, 0.051020408163265307, 0.051020408163265307, 0.056122448979591837],
# 'EGFR': [0.056818181818181816, 0.21590909090909091, 0.0625, 0.068181818181818177, 0.068181818181818177, 0.0625, 0.34659090909090912, 0.0625, 0.056818181818181816],
# 'BRCA2': [0.13333333333333333, 0.060606060606060608, 0.060606060606060608, 0.078787878787878782, 0.1393939393939394, 0.34545454545454546, 0.060606060606060608, 0.060606060606060608, 0.060606060606060608],
# 'PTEN': [0.069182389937106917, 0.062893081761006289, 0.069182389937106917, 0.46540880503144655, 0.075471698113207544, 0.062893081761006289, 0.069182389937106917, 0.062893081761006289, 0.062893081761006289],
# 'KIT': [0.066225165562913912, 0.25165562913907286, 0.072847682119205295, 0.072847682119205295, 0.066225165562913912, 0.066225165562913912, 0.27152317880794702, 0.066225165562913912, 0.066225165562913912],
# 'BRAF': [0.066666666666666666, 0.17999999999999999, 0.073333333333333334, 0.073333333333333334, 0.093333333333333338, 0.080000000000000002, 0.29999999999999999, 0.066666666666666666, 0.066666666666666666],
# ...
# }
gv_dict = get_gv_fea_dict(alpha, feature, df)
# value_count is similar in get_gv_fea_dict
value_count = train_df[feature].value_counts()
# gv_fea: Gene_variation feature, it will contain the feature for each feature value in the data
gv_fea = []
# for every feature values in the given data frame we will check if it is there in the train data then we will add the feature to gv_fea
# if not we will add [1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9] to gv_fea
for index, row in df.iterrows():
if row[feature] in dict(value_count).keys():
gv_fea.append(gv_dict[row[feature]])
else:
gv_fea.append([1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9])
# gv_fea.append([-1,-1,-1,-1,-1,-1,-1,-1,-1])
return gv_fea
#response-coding of the Gene feature
# alpha is used for laplace smoothing
alpha = 1
# train gene feature
train_gene_feature_responseCoding = np.array(get_gv_feature(alpha, "Gene", train_df))
# test gene feature
test_gene_feature_responseCoding = np.array(get_gv_feature(alpha, "Gene", test_df))
# cross validation gene feature
cv_gene_feature_responseCoding = np.array(get_gv_feature(alpha, "Gene", cv_df))
'''
how to test whether gene is a good feature for model ?
by using random model log loss
create logistic regression model with only gene feature and check the model log loss
if > random model then gene is a good feature for the model
in order to do that:
laplace smooting
* in NB we use LS i,e in test query there is a word that is not present in training test
* what to do with new word ?
* can we drop ? yes but we're saying it has value 1 if we're dropping. that should not be the case
* can we assign value 0 ? WHole multiplication becomes zero
* so we use laplace smooting or editing smoothing i,e we add alpha (hyper parameter) and alpha K (k=no of classes)
* alpha = 1, in general. can change since it is hyperparameter
* alpha cannot be small or too large --> bias-variance trade off
CALLIBIRATED CLASSIFIER --> for getting results in probability format to be used for log loss
SGD --> for optimization
'''
# using 1-hot encoding because more dimension is fine with logistic regression algo
# We need a hyperparemeter for SGD classifier.
alpha = [10 ** x for x in range(-5, 1)]
# SGD classifier
cv_log_error_array=[]
for i in alpha:
clf = SGDClassifier(alpha=i, penalty='l2', loss='log', random_state=42)
clf.fit(train_gene_feature_onehotCoding, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_gene_feature_onehotCoding, y_train)
predict_y = sig_clf.predict_proba(cv_gene_feature_onehotCoding)
cv_log_error_array.append(log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
print('For values of alpha = ', i, "The log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
# alpha 0.001 log loss is minimal
# Lets plot the same to check the best Alpha value
fig, ax = plt.subplots()
ax.plot(alpha, cv_log_error_array,c='g')
for i, txt in enumerate(np.round(cv_log_error_array,3)):
ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],cv_log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
# Lets use best alpha value as we can see from above graph and compute log loss
best_alpha = np.argmin(cv_log_error_array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='l2', loss='log', random_state=42)
clf.fit(train_gene_feature_onehotCoding, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_gene_feature_onehotCoding, y_train)
predict_y = sig_clf.predict_proba(train_gene_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(cv_gene_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(test_gene_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
# log loss is less than random model
# how stable is model ?
# in train there is less for gene and in test there is more. is called as overlap
# overlap should be good
# though we're using laplace smoothing, its not a great idea
# data and model will be stable if we've good overlap
# check how many values are overlapping between train, test or between CV and train
test_coverage=test_df[test_df['Gene'].isin(list(set(train_df['Gene'])))].shape[0]
cv_coverage=cv_df[cv_df['Gene'].isin(list(set(train_df['Gene'])))].shape[0]
print('1. In test data',test_coverage, 'out of',test_df.shape[0], ":",(test_coverage/test_df.shape[0])*100)
print('2. In cross validation data',cv_coverage, 'out of ',cv_df.shape[0],":" ,(cv_coverage/cv_df.shape[0])*100)
# EVALUATING VARIATION FEATURE
# Variation is also a categorical variable so we have to deal in same way like we have done for Gene column.
# We will again get the one hot encoder and response enoding variable for variation column.
unique_variations = train_df['Variation'].value_counts()
print('Number of Unique Variations :', unique_variations.shape[0])
# the top 10 variations that occured most
print(unique_variations.head(10))
# comulative distribution of unique variation values
s = sum(unique_variations.values);
h = unique_variations.values/s;
c = np.cumsum(h)
print(c)
plt.plot(c,label='Cumulative distribution of Variations')
plt.grid()
plt.legend()
plt.show()
# one-hot encoding of variation feature.
variation_vectorizer = CountVectorizer()
train_variation_feature_onehotCoding = variation_vectorizer.fit_transform(train_df['Variation'])
test_variation_feature_onehotCoding = variation_vectorizer.transform(test_df['Variation'])
cv_variation_feature_onehotCoding = variation_vectorizer.transform(cv_df['Variation'])
train_variation_feature_onehotCoding.shape
# alpha is used for laplace smoothing
alpha = 1
# train gene feature
train_variation_feature_responseCoding = np.array(get_gv_feature(alpha, "Variation", train_df))
# test gene feature
test_variation_feature_responseCoding = np.array(get_gv_feature(alpha, "Variation", test_df))
# cross validation gene feature
cv_variation_feature_responseCoding = np.array(get_gv_feature(alpha, "Variation", cv_df))
train_variation_feature_responseCoding.shape
# We need a hyperparemeter for SGD classifier.
alpha = [10 ** x for x in range(-5, 1)]
# SGD classifier
cv_log_error_array=[]
for i in alpha:
clf = SGDClassifier(alpha=i, penalty='l2', loss='log', random_state=42)
clf.fit(train_variation_feature_onehotCoding, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_variation_feature_onehotCoding, y_train)
predict_y = sig_clf.predict_proba(cv_variation_feature_onehotCoding)
cv_log_error_array.append(log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
print('For values of alpha = ', i, "The log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
# Lets plot the same to check the best Alpha value
fig, ax = plt.subplots()
ax.plot(alpha, cv_log_error_array,c='g')
for i, txt in enumerate(np.round(cv_log_error_array,3)):
ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],cv_log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best_alpha = np.argmin(cv_log_error_array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='l2', loss='log', random_state=42)
clf.fit(train_variation_feature_onehotCoding, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_variation_feature_onehotCoding, y_train)
predict_y = sig_clf.predict_proba(train_variation_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(cv_variation_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(test_variation_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
# alpha 0.0001, test log loss is less compared to random model so good have variation feature
test_coverage=test_df[test_df['Variation'].isin(list(set(train_df['Variation'])))].shape[0]
cv_coverage=cv_df[cv_df['Variation'].isin(list(set(train_df['Variation'])))].shape[0]
print('1. In test data',test_coverage, 'out of',test_df.shape[0], ":",(test_coverage/test_df.shape[0])*100)
print('2. In cross validation data',cv_coverage, 'out of ',cv_df.shape[0],":" ,(cv_coverage/cv_df.shape[0])*100)
# stability is low for variation feature. since log loss is less, lets keep it
# EVALUATING TEXT COLUMN
# cls_text is a data frame
# for every row in data frame consider the 'TEXT'
# split the words by space
# make a dict with those words
# increment its count whenever we see that word
# to get word count
def extract_dictionary_paddle(cls_text):
dictionary = defaultdict(int)
for index, row in cls_text.iterrows():
for word in row['TEXT'].split():
dictionary[word] +=1
return dictionary
import math
#https://stackoverflow.com/a/1602964
def get_text_responsecoding(df):
text_feature_responseCoding = np.zeros((df.shape[0],9))
for i in range(0,9):
row_index = 0
for index, row in df.iterrows():
sum_prob = 0
for word in row['TEXT'].split():
sum_prob += math.log(((dict_list[i].get(word,0)+10 )/(total_dict.get(word,0)+90)))
text_feature_responseCoding[row_index][i] = math.exp(sum_prob/len(row['TEXT'].split()))
row_index += 1
return text_feature_responseCoding
# building a CountVectorizer with all the words that occured minimum 3 times in train data
text_vectorizer = CountVectorizer(min_df=3)
train_text_feature_onehotCoding = text_vectorizer.fit_transform(train_df['TEXT'])
# getting all the feature names (words)
train_text_features= text_vectorizer.get_feature_names()
# train_text_feature_onehotCoding.sum(axis=0).A1 will sum every row and returns (1*number of features) vector
train_text_fea_counts = train_text_feature_onehotCoding.sum(axis=0).A1
# zip(list(text_features),text_fea_counts) will zip a word with its number of times it occured
text_fea_dict = dict(zip(list(train_text_features),train_text_fea_counts))
print("Total number of unique words in train data :", len(train_text_features))
dict_list = []
# dict_list =[] contains 9 dictoinaries each corresponds to a class
for i in range(1,10):
cls_text = train_df[train_df['Class']==i]
# build a word dict based on the words in that class
dict_list.append(extract_dictionary_paddle(cls_text))
# append it to dict_list
# dict_list[i] is build on i'th class text data
# total_dict is buid on whole training text data
total_dict = extract_dictionary_paddle(train_df)
confuse_array = []
for i in train_text_features:
ratios = []
max_val = -1
for j in range(0,9):
ratios.append((dict_list[j][i]+10 )/(total_dict[i]+90))
confuse_array.append(ratios)
confuse_array = np.array(confuse_array)
#response coding of text features
train_text_feature_responseCoding = get_text_responsecoding(train_df)
test_text_feature_responseCoding = get_text_responsecoding(test_df)
cv_text_feature_responseCoding = get_text_responsecoding(cv_df)
# https://stackoverflow.com/a/16202486
# we convert each row values such that they sum to 1
train_text_feature_responseCoding = (train_text_feature_responseCoding.T/train_text_feature_responseCoding.sum(axis=1)).T
test_text_feature_responseCoding = (test_text_feature_responseCoding.T/test_text_feature_responseCoding.sum(axis=1)).T
cv_text_feature_responseCoding = (cv_text_feature_responseCoding.T/cv_text_feature_responseCoding.sum(axis=1)).T
# don't forget to normalize every feature
train_text_feature_onehotCoding = normalize(train_text_feature_onehotCoding, axis=0)
# we use the same vectorizer that was trained on train data
test_text_feature_onehotCoding = text_vectorizer.transform(test_df['TEXT'])
# don't forget to normalize every feature
test_text_feature_onehotCoding = normalize(test_text_feature_onehotCoding, axis=0)
# we use the same vectorizer that was trained on train data
cv_text_feature_onehotCoding = text_vectorizer.transform(cv_df['TEXT'])
# don't forget to normalize every feature
cv_text_feature_onehotCoding = normalize(cv_text_feature_onehotCoding, axis=0)
#https://stackoverflow.com/a/2258273/4084039
sorted_text_fea_dict = dict(sorted(text_fea_dict.items(), key=lambda x: x[1] , reverse=True))
sorted_text_occur = np.array(list(sorted_text_fea_dict.values()))
# Number of words for a given frequency.
print(Counter(sorted_text_occur))
# build the model with only text column
cv_log_error_array=[]
for i in alpha:
clf = SGDClassifier(alpha=i, penalty='l2', loss='log', random_state=42)
clf.fit(train_text_feature_onehotCoding, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_text_feature_onehotCoding, y_train)
predict_y = sig_clf.predict_proba(cv_text_feature_onehotCoding)
cv_log_error_array.append(log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
print('For values of alpha = ', i, "The log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
# log loss is less than random model
fig, ax = plt.subplots()
ax.plot(alpha, cv_log_error_array,c='g')
for i, txt in enumerate(np.round(cv_log_error_array,3)):
ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],cv_log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best_alpha = np.argmin(cv_log_error_array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='l2', loss='log', random_state=42)
clf.fit(train_text_feature_onehotCoding, y_train)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_text_feature_onehotCoding, y_train)
predict_y = sig_clf.predict_proba(train_text_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(cv_text_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(test_text_feature_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
# check the overlap of text data
def get_intersec_text(df):
df_text_vec = CountVectorizer(min_df=3)
df_text_fea = df_text_vec.fit_transform(df['TEXT'])
df_text_features = df_text_vec.get_feature_names()
df_text_fea_counts = df_text_fea.sum(axis=0).A1
df_text_fea_dict = dict(zip(list(df_text_features),df_text_fea_counts))
len1 = len(set(df_text_features))
len2 = len(set(train_text_features) & set(df_text_features))
return len1,len2
len1,len2 = get_intersec_text(test_df)
print(np.round((len2/len1)*100, 3), "% of word of test data appeared in train data")
len1,len2 = get_intersec_text(cv_df)
print(np.round((len2/len1)*100, 3), "% of word of Cross Validation appeared in train data")
# text column as good stable
# therefore, all 3 columns are going important for model buidling
# Data prepration for Machine Learning models
# few utility functions
def report_log_loss(train_x, train_y, test_x, test_y, clf):
clf.fit(train_x, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x, train_y)
sig_clf_probs = sig_clf.predict_proba(test_x)
return log_loss(test_y, sig_clf_probs, eps=1e-15)
# This function plots the confusion matrices given y_i, y_i_hat.
def plot_confusion_matrix(test_y, predict_y):
C = confusion_matrix(test_y, predict_y)
A =(((C.T)/(C.sum(axis=1))).T)
B =(C/C.sum(axis=0))
labels = [1,2,3,4,5,6,7,8,9]
# representing A in heatmap format
print("-"*20, "Confusion matrix", "-"*20)
plt.figure(figsize=(20,7))
sns.heatmap(C, annot=True, cmap="YlGnBu", fmt=".3f", xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.show()
print("-"*20, "Precision matrix (Columm Sum=1)", "-"*20)
plt.figure(figsize=(20,7))
sns.heatmap(B, annot=True, cmap="YlGnBu", fmt=".3f", xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.show()
# representing B in heatmap format
print("-"*20, "Recall matrix (Row sum=1)", "-"*20)
plt.figure(figsize=(20,7))
sns.heatmap(A, annot=True, cmap="YlGnBu", fmt=".3f", xticklabels=labels, yticklabels=labels)
plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.show()
def predict_and_plot_confusion_matrix(train_x, train_y,test_x, test_y, clf):
clf.fit(train_x, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x, train_y)
pred_y = sig_clf.predict(test_x)
# for calculating log_loss we willl provide the array of probabilities belongs to each class
print("Log loss :",log_loss(test_y, sig_clf.predict_proba(test_x)))
# calculating the number of data points that are misclassified
print("Number of mis-classified points :", np.count_nonzero((pred_y- test_y))/test_y.shape[0])
plot_confusion_matrix(test_y, pred_y)
# this function will be used just for naive bayes
# for the given indices, we will print the name of the features
# and we will check whether the feature present in the test point text or not
def get_impfeature_names(indices, text, gene, var, no_features):
gene_count_vec = CountVectorizer()
var_count_vec = CountVectorizer()
text_count_vec = CountVectorizer(min_df=3)
gene_vec = gene_count_vec.fit(train_df['Gene'])
var_vec = var_count_vec.fit(train_df['Variation'])
text_vec = text_count_vec.fit(train_df['TEXT'])
fea1_len = len(gene_vec.get_feature_names())
fea2_len = len(var_count_vec.get_feature_names())
word_present = 0
for i,v in enumerate(indices):
if (v < fea1_len):
word = gene_vec.get_feature_names()[v]
yes_no = True if word == gene else False
if yes_no:
word_present += 1
print(i, "Gene feature [{}] present in test data point [{}]".format(word,yes_no))
elif (v < fea1_len+fea2_len):
word = var_vec.get_feature_names()[v-(fea1_len)]
yes_no = True if word == var else False
if yes_no:
word_present += 1
print(i, "variation feature [{}] present in test data point [{}]".format(word,yes_no))
else:
word = text_vec.get_feature_names()[v-(fea1_len+fea2_len)]
yes_no = True if word in text.split() else False
if yes_no:
word_present += 1
print(i, "Text feature [{}] present in test data point [{}]".format(word,yes_no))
print("Out of the top ",no_features," features ", word_present, "are present in query point")
## Combining all 3 features together
# merging gene, variance and text features
# building train, test and cross validation data sets
# a = [[1, 2],
# [3, 4]]
# b = [[4, 5],
# [6, 7]]
# hstack(a, b) = [[1, 2, 4, 5],
# [ 3, 4, 6, 7]]
train_gene_var_onehotCoding = hstack((train_gene_feature_onehotCoding,train_variation_feature_onehotCoding))
test_gene_var_onehotCoding = hstack((test_gene_feature_onehotCoding,test_variation_feature_onehotCoding))
cv_gene_var_onehotCoding = hstack((cv_gene_feature_onehotCoding,cv_variation_feature_onehotCoding))
train_x_onehotCoding = hstack((train_gene_var_onehotCoding, train_text_feature_onehotCoding)).tocsr()
train_y = np.array(list(train_df['Class']))
test_x_onehotCoding = hstack((test_gene_var_onehotCoding, test_text_feature_onehotCoding)).tocsr()
test_y = np.array(list(test_df['Class']))
cv_x_onehotCoding = hstack((cv_gene_var_onehotCoding, cv_text_feature_onehotCoding)).tocsr()
cv_y = np.array(list(cv_df['Class']))
train_gene_var_responseCoding = np.hstack((train_gene_feature_responseCoding,train_variation_feature_responseCoding))
test_gene_var_responseCoding = np.hstack((test_gene_feature_responseCoding,test_variation_feature_responseCoding))
cv_gene_var_responseCoding = np.hstack((cv_gene_feature_responseCoding,cv_variation_feature_responseCoding))
train_x_responseCoding = np.hstack((train_gene_var_responseCoding, train_text_feature_responseCoding))
test_x_responseCoding = np.hstack((test_gene_var_responseCoding, test_text_feature_responseCoding))
cv_x_responseCoding = np.hstack((cv_gene_var_responseCoding, cv_text_feature_responseCoding))
print("One hot encoding features :")
print("(number of data points * number of features) in train data = ", train_x_onehotCoding.shape)
print("(number of data points * number of features) in test data = ", test_x_onehotCoding.shape)
print("(number of data points * number of features) in cross validation data =", cv_x_onehotCoding.shape)
print(" Response encoding features :")
print("(number of data points * number of features) in train data = ", train_x_responseCoding.shape)
print("(number of data points * number of features) in test data = ", test_x_responseCoding.shape)
print("(number of data points * number of features) in cross validation data =", cv_x_responseCoding.shape)
# Building Machine Learning model
# http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
alpha = [0.00001, 0.0001, 0.001, 0.1, 1, 10, 100,1000]
cv_log_error_array = []
for i in alpha:
print("for alpha =", i)
clf = MultinomialNB(alpha=i)
clf.fit(train_x_onehotCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_onehotCoding, train_y)
sig_clf_probs = sig_clf.predict_proba(cv_x_onehotCoding)
cv_log_error_array.append(log_loss(cv_y, sig_clf_probs, labels=clf.classes_, eps=1e-15))
# to avoid rounding error while multiplying probabilites we use log-probability estimates
print("Log Loss :",log_loss(cv_y, sig_clf_probs))
fig, ax = plt.subplots()
ax.plot(np.log10(alpha), cv_log_error_array,c='g')
for i, txt in enumerate(np.round(cv_log_error_array,3)):
ax.annotate((alpha[i],str(txt)), (np.log10(alpha[i]),cv_log_error_array[i]))
plt.grid()
plt.xticks(np.log10(alpha))
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best_alpha = np.argmin(cv_log_error_array)
clf = MultinomialNB(alpha=alpha[best_alpha])
clf.fit(train_x_onehotCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_onehotCoding, train_y)
predict_y = sig_clf.predict_proba(train_x_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(cv_x_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(test_x_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
# Testing our Naive Bayes model with best found value of alpha on testing data
clf = MultinomialNB(alpha=alpha[best_alpha])
clf.fit(train_x_onehotCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_onehotCoding, train_y)
sig_clf_probs = sig_clf.predict_proba(cv_x_onehotCoding)
# to avoid rounding error while multiplying probabilites we use log-probability estimates
print("Log Loss :",log_loss(cv_y, sig_clf_probs))
print("Number of missclassified point :", np.count_nonzero((sig_clf.predict(cv_x_onehotCoding)- cv_y))/cv_y.shape[0])
plot_confusion_matrix(cv_y, sig_clf.predict(cv_x_onehotCoding.toarray()))
# interpretability of model
test_point_index = 1
no_feature = 100
predicted_cls = sig_clf.predict(test_x_onehotCoding[test_point_index])
print("Predicted Class :", predicted_cls[0])
print("Predicted Class Probabilities:", np.round(sig_clf.predict_proba(test_x_onehotCoding[test_point_index]),4))
print("Actual Class :", test_y[test_point_index])
indices = np.argsort(-clf.coef_)[predicted_cls-1][:,:no_feature]
print("-"*50)
get_impfeature_names(indices[0], test_df['TEXT'].iloc[test_point_index],test_df['Gene'].iloc[test_point_index],test_df['Variation'].iloc[test_point_index], no_feature)
# one more ex
test_point_index = 100
no_feature = 100
predicted_cls = sig_clf.predict(test_x_onehotCoding[test_point_index])
print("Predicted Class :", predicted_cls[0])
print("Predicted Class Probabilities:", np.round(sig_clf.predict_proba(test_x_onehotCoding[test_point_index]),4))
print("Actual Class :", test_y[test_point_index])
indices = np.argsort(-clf.coef_)[predicted_cls-1][:,:no_feature]
print("-"*50)
get_impfeature_names(indices[0], test_df['TEXT'].iloc[test_point_index],test_df['Gene'].iloc[test_point_index],test_df['Variation'].iloc[test_point_index], no_feature)
# So Naive Bayes not performing very badly but lets look at other models
# Logistic Regression
# Balancing all classes
alpha = [10 ** x for x in range(-6, 3)]
cv_log_error_array = []
for i in alpha:
print("for alpha =", i)
clf = SGDClassifier(class_weight='balanced', alpha=i, penalty='l2', loss='log', random_state=42)
clf.fit(train_x_onehotCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_onehotCoding, train_y)
sig_clf_probs = sig_clf.predict_proba(cv_x_onehotCoding)
cv_log_error_array.append(log_loss(cv_y, sig_clf_probs, labels=clf.classes_, eps=1e-15))
# to avoid rounding error while multiplying probabilites we use log-probability estimates
print("Log Loss :",log_loss(cv_y, sig_clf_probs))
fig, ax = plt.subplots()
ax.plot(alpha, cv_log_error_array,c='g')
for i, txt in enumerate(np.round(cv_log_error_array,3)):
ax.annotate((alpha[i],str(txt)), (alpha[i],cv_log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best_alpha = np.argmin(cv_log_error_array)
clf = SGDClassifier(class_weight='balanced', alpha=alpha[best_alpha], penalty='l2', loss='log', random_state=42)
clf.fit(train_x_onehotCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_onehotCoding, train_y)
predict_y = sig_clf.predict_proba(train_x_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(cv_x_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(test_x_onehotCoding)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
# Lets test it on testing data using best alpha value
clf = SGDClassifier(class_weight='balanced', alpha=alpha[best_alpha], penalty='l2', loss='log', random_state=42)
predict_and_plot_confusion_matrix(train_x_onehotCoding, train_y, cv_x_onehotCoding, cv_y, clf)
# feature importance
def get_imp_feature_names(text, indices, removed_ind = []):
word_present = 0
tabulte_list = []
incresingorder_ind = 0
for i in indices:
if i < train_gene_feature_onehotCoding.shape[1]:
tabulte_list.append([incresingorder_ind, "Gene", "Yes"])
elif i< 18:
tabulte_list.append([incresingorder_ind,"Variation", "Yes"])
if ((i > 17) & (i not in removed_ind)) :
word = train_text_features[i]
yes_no = True if word in text.split() else False
if yes_no:
word_present += 1
tabulte_list.append([incresingorder_ind,train_text_features[i], yes_no])
incresingorder_ind += 1
print(word_present, "most importent features are present in our query point")
print("-"*50)
print("The features that are most importent of the ",predicted_cls[0]," class:")
print (tabulate(tabulte_list, headers=["Index",'Feature name', 'Present or Not']))
# testing query point and doing interpretability
# from tabulate import tabulate
clf = SGDClassifier(class_weight='balanced', alpha=alpha[best_alpha], penalty='l2', loss='log', random_state=42)
clf.fit(train_x_onehotCoding,train_y)
test_point_index = 1
no_feature = 500
predicted_cls = sig_clf.predict(test_x_onehotCoding[test_point_index])
print("Predicted Class :", predicted_cls[0])
print("Predicted Class Probabilities:", np.round(sig_clf.predict_proba(test_x_onehotCoding[test_point_index]),4))
print("Actual Class :", test_y[test_point_index])
indices = np.argsort(-clf.coef_)[predicted_cls-1][:,:no_feature]
print("-"*50)
get_impfeature_names(indices[0], test_df['TEXT'].iloc[test_point_index],test_df['Gene'].iloc[test_point_index],test_df['Variation'].iloc[test_point_index], no_feature)
test_point_index = 100
no_feature = 500
predicted_cls = sig_clf.predict(test_x_onehotCoding[test_point_index])
print("Predicted Class :", predicted_cls[0])
print("Predicted Class Probabilities:", np.round(sig_clf.predict_proba(test_x_onehotCoding[test_point_index]),4))
print("Actual Class :", test_y[test_point_index])
indices = np.argsort(-clf.coef_)[predicted_cls-1][:,:no_feature]
print("-"*50)
get_impfeature_names(indices[0], test_df['TEXT'].iloc[test_point_index],test_df['Gene'].iloc[test_point_index],test_df['Variation'].iloc[test_point_index], no_feature)
# K Nearest Neighbour Classification
alpha = [5, 11, 15, 21, 31, 41, 51, 99]
cv_log_error_array = []
for i in alpha:
print("for alpha =", i)
clf = KNeighborsClassifier(n_neighbors=i)
clf.fit(train_x_responseCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_responseCoding, train_y)
sig_clf_probs = sig_clf.predict_proba(cv_x_responseCoding)
cv_log_error_array.append(log_loss(cv_y, sig_clf_probs, labels=clf.classes_, eps=1e-15))
# to avoid rounding error while multiplying probabilites we use log-probability estimates
print("Log Loss :",log_loss(cv_y, sig_clf_probs))
fig, ax = plt.subplots()
ax.plot(alpha, cv_log_error_array,c='g')
for i, txt in enumerate(np.round(cv_log_error_array,3)):
ax.annotate((alpha[i],str(txt)), (alpha[i],cv_log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best_alpha = np.argmin(cv_log_error_array)
clf = KNeighborsClassifier(n_neighbors=alpha[best_alpha])
clf.fit(train_x_responseCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_responseCoding, train_y)
predict_y = sig_clf.predict_proba(train_x_responseCoding)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(cv_x_responseCoding)
print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(test_x_responseCoding)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
clf = KNeighborsClassifier(n_neighbors=alpha[best_alpha])
predict_and_plot_confusion_matrix(train_x_responseCoding, train_y, cv_x_responseCoding, cv_y, clf)
# Lets look at few test points
clf = KNeighborsClassifier(n_neighbors=alpha[best_alpha])
clf.fit(train_x_responseCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_responseCoding, train_y)
test_point_index = 1
predicted_cls = sig_clf.predict(test_x_responseCoding[0].reshape(1,-1))
print("Predicted Class :", predicted_cls[0])
print("Actual Class :", test_y[test_point_index])
neighbors = clf.kneighbors(test_x_responseCoding[test_point_index].reshape(1, -1), alpha[best_alpha])
print("The ",alpha[best_alpha]," nearest neighbours of the test points belongs to classes",train_y[neighbors[1][0]])
print("Fequency of nearest points :",Counter(train_y[neighbors[1][0]]))
clf = KNeighborsClassifier(n_neighbors=alpha[best_alpha])
clf.fit(train_x_responseCoding, train_y)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
sig_clf.fit(train_x_responseCoding, train_y)
test_point_index = 100
predicted_cls = sig_clf.predict(test_x_responseCoding[test_point_index].reshape(1,-1))
print("Predicted Class :", predicted_cls[0])
print("Actual Class :", test_y[test_point_index])
neighbors = clf.kneighbors(test_x_responseCoding[test_point_index].reshape(1, -1), alpha[best_alpha])
print("the k value for knn is",alpha[best_alpha],"and the nearest neighbours of the test points belongs to classes",train_y[neighbors[1][0]])
print("Fequency of nearest points :",Counter(train_y[neighbors[1][0]]))
# without balancing data for logistic regression .01 difference in log loss
# linear SVM dint reduce w.r.t log loss
# random forest classifier with 1-hot encoding and response encoding (was worse than 1-hot encoding) dint reduce w.r.t log loss
# stacking model dint reduce w.r.t log loss
# logistic regression with balancing and 1-hot encoding has got the lowest log loss