from keras.models import Sequential
from keras.layers import Dense, Activation
from keras import optimizers
import numpy as np
from dataloader import *
np.set_printoptions(threshold = np.nan)
trainX, trainY, testX, testY = import_data()
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
clf = RandomForestClassifier( n_estimators=20)
clf.fit (trainX, trainY)
yhat = clf.predict(testX)