[1654c6]: / ispy1 / predictive_statistics.py

Download this file

256 lines (188 with data), 8.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from sklearn import preprocessing
from sklearn import metrics
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn import metrics, linear_model
from imblearn import over_sampling
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import RandomForestClassifier as RFC
import numpy as np
import matplotlib.pyplot as plt
RANDOM_STATE = 42; # for reproducibility
def labels_to_numbers(DataFrame, Variable):
le = preprocessing.LabelEncoder()
numbers_ = le.fit_transform(DataFrame[Variable].values)
return numbers_
def binary_classifier_metrics(classifier, Xtrain, Ytrain, Xtest, Ytest):
# metrics
predicted_class = classifier.predict(Xtest)
kappa = metrics.cohen_kappa_score(Ytest,predicted_class)
np.round(kappa,3)
auc = metrics.roc_auc_score(Ytest,predicted_class)
auc = np.round(auc,3)
# ROC curve
probability = classifier.predict_proba(Xtest)
fpr, tpr, _ = metrics.roc_curve(Ytest, probability[:,1], drop_intermediate=False)
# report
print(metrics.classification_report(Ytest,predicted_class))
print('The estimated Cohen kappa is ' + str(kappa))
print('The estimated AUC is ' + str(auc))
print('=='*30)
print('\n'*2)
return auc, kappa, fpr, tpr
def split_data(Xdata,Ydata, oversample, K_neighbors = 4):
if oversample == False:
X_train, X_test, y_train, y_test = train_test_split(Xdata, Ydata,
train_size = 0.70,
random_state=RANDOM_STATE)
elif oversample == True:
print('Data was oversampled using the ADASYN method')
smote = over_sampling.ADASYN(random_state = RANDOM_STATE, n_neighbors = K_neighbors)
# split
X_train, X_test, y_train, y_test = train_test_split(Xdata, Ydata,train_size = 0.70, random_state=RANDOM_STATE)
X_train, y_train = smote.fit_sample(X_train,y_train)
# oversample the train sets
#X_over, y_over = smote.fit_sample(Xdata,Ydata)
#X_train, X_test, y_train, y_test = train_test_split(X_over, y_over,train_size = 0.70,random_state=RANDOM_STATE, stratify = y_over)
return X_train, X_test, y_train, y_test
# perform Logistic Regression without correcting for unbalance
def Logistic_Regression(Xdata, Ydata, oversample = False, K_neighbors = 4):
'''
Perform Logistic Regression optimizing C, penalty, and fit_intercept to maximize
Cohen kappa (min = 0, max = 1.0)
'''
# split data
X_train, X_test, y_train, y_test = split_data(Xdata,Ydata, oversample, K_neighbors)
# train and tune parameters using GridSearchCV
pars= dict( C = np.arange(.01,100,.1),
penalty = ['l2', 'l1'],
fit_intercept = [True,False])
grid = GridSearchCV( linear_model.LogisticRegression(), param_grid = pars,
scoring = metrics.make_scorer(metrics.cohen_kappa_score),
cv= 5, verbose = 0, n_jobs = -1)
# fit
grid.fit(X_train,y_train)
# metrics
auc, kappa, fpr, tpr = binary_classifier_metrics(grid, X_train, y_train, X_test, y_test)
# output
return auc, kappa, fpr, tpr
# Random Forest Regressor
def RandomForest_Classifier(Xdata, Ydata, oversample = False, K_neighbors = 4, calibrate_prob = True):
# split data
X_train, X_test, y_train, y_test = split_data(Xdata,Ydata, oversample, K_neighbors)
# define parameter grid search
pars = dict( n_estimators = np.arange(1,10,1),
max_features = np.arange(1, Xdata.shape[1], 1),
max_depth = [None, 1, 2, 3, 4, 5])
# perform grid search
grid= GridSearchCV(RFC( random_state = RANDOM_STATE),param_grid = pars,
scoring = metrics.make_scorer(metrics.cohen_kappa_score),
cv= 3, verbose = 0, n_jobs = -1)
# fit
grid.fit(X_train,y_train)
# get best classifier and calibrate it
clv = CalibratedClassifierCV(base_estimator = grid.best_estimator_ , method='sigmoid', cv=3)
# metrics
auc, kappa, fpr, tpr = binary_classifier_metrics(grid, X_train, y_train, X_test, y_test)
# output
return auc, kappa, fpr, tpr, grid.best_estimator_
def plot_forest_feature_importances_(forest, features_legend, title = ''):
importances = forest.feature_importances_;
importances = importances / np.max(importances)
sorted_index = np.argsort(importances)
x = range(len(importances));
plt.figure()
plt.barh(x, importances[sorted_index],color="b", align="center")
plt.yticks(sorted_index, features_legend);
plt.title(title);
plt.xlabel('RELATIVE IMPORTANCE');
plt.ylabel('PREDICTOR');
plt.show()
def plot_compare_roc(fpr1_, tpr1_,fpr2_, tpr2_, auc1, auc2, title =''):
plt.figure()
plt.plot(fpr1_, tpr1_, fpr2_, tpr2_);
plt.legend(['Unbalanced | AUC = ' + str(auc1),'Oversampled | AUC = ' + str(auc2)]);
plt.xlabel('False-positive rate');
plt.ylabel('True-positive rate');
plt.title(title);
## ============== Continous Outcomes ============== ##
# metrics
mae = metrics.median_absolute_error
def mae_report(Ytest, Yhat, outcome_):
error = mae(Ytest, Yhat)
error = np.round( error, decimals=3)
# report
print('==' *40)
print('The median absolute error for testing data set of ' + outcome_ + ' is: ' + str(error))
print('==' *40)
import seaborn.apionly as sns
def train_test_report(predictor, Xtrain, Ytrain, Xtest, Ytest, outcome):
# train
predictor.fit(Xtrain, Ytrain)
# test
Yhat = predictor.predict(Xtest)
# report
mae_report(Ytest, Yhat, outcome)
ax = sns.regplot(x = Ytrain, y= predictor.predict(Xtrain));
ax.set_ylabel('Predicted ' + outcome);
ax.set_xlabel('Observed ' + outcome);
# lsq
import statsmodels.api as sm
def lsq(Xtrain,Ytrain, Xtest, Ytest, outcome =''):
# train
OLS = sm.OLS(Ytrain,Xtrain).fit();
print(OLS.summary())
#test
Yhat = OLS.predict(Xtest)
# report
mae_report(Ytest, Yhat, outcome)
# SVR
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
# GridSearchCV utility
def gridsearch(regressor, grid):
optimized_regressor= GridSearchCV( regressor,
param_grid = grid,
cv= 3, verbose = 0, n_jobs = -1,
scoring = metrics.make_scorer(metrics.median_absolute_error))
return optimized_regressor
def svr(Xtrain,Ytrain, Xtest, Ytest, outcome = ''):
# define regressor
regressor = SVR()
# define parameter grid search
grid = dict( kernel = ['rbf','linear','sigmoid'],
C = np.arange(1,11,.1),
epsilon = np.arange(1,11,.1),
gamma = np.linspace(1/10,10,10))
# perform grid search
grid_search= gridsearch(regressor, grid)
# train, test, and report
train_test_report(grid_search, Xtrain, Ytrain, Xtest, Ytest, outcome)
return grid_search
# ElasticNet
from sklearn.linear_model import ElasticNet as ENet
def ElasticNet(Xtrain,Ytrain, Xtest, Ytest, outcome = ''):
# define regressor
regressor = ENet(max_iter=5000)
# define parameter grid search
grid = dict( alpha = np.arange(1,20,.5), l1_ratio = np.arange(.1,1,.05))
# perform grid search
grid_search= gridsearch(regressor, grid)
# train, test, and report
train_test_report(grid_search, Xtrain, Ytrain, Xtest, Ytest, outcome)
return grid_search
# Random Forest Regressor
from sklearn.ensemble import RandomForestRegressor as RFR
def RandomForestRegressor(Xtrain,Ytrain, Xtest, Ytest, outcome = ''):
# define regressor
regressor = RFR( criterion='mse', random_state = RANDOM_STATE)
#
num_features = Xtrain.shape[1]
# define parameter grid search
grid = dict( n_estimators = np.arange(5,100,5),
max_features = np.arange(1,num_features, 1),
max_depth = [None, 1, 2, 3, 4, 5])
# perform grid search
grid_search= gridsearch(regressor, grid)
# train, test, and report
train_test_report(grid_search, Xtrain, Ytrain, Xtest, Ytest, outcome)
return grid_search