|
a |
|
b/Analysis top20 vs bottom20.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": { |
|
|
7 |
"id": "8KSBPEA9iZc1" |
|
|
8 |
}, |
|
|
9 |
"outputs": [], |
|
|
10 |
"source": [ |
|
|
11 |
"\"\"\"\n", |
|
|
12 |
"Initialize environment and import necessary libraries for the detailed comparison\n", |
|
|
13 |
"of top 20% vs bottom 20% diverse head and neck cancer clinical trials.\n", |
|
|
14 |
"\"\"\"\n", |
|
|
15 |
"\n", |
|
|
16 |
"import numpy as np\n", |
|
|
17 |
"import pandas as pd\n", |
|
|
18 |
"\n", |
|
|
19 |
"import plotly\n", |
|
|
20 |
"import plotly.express as px" |
|
|
21 |
] |
|
|
22 |
}, |
|
|
23 |
{ |
|
|
24 |
"cell_type": "code", |
|
|
25 |
"execution_count": null, |
|
|
26 |
"metadata": { |
|
|
27 |
"id": "U1XH-hqSieep" |
|
|
28 |
}, |
|
|
29 |
"outputs": [], |
|
|
30 |
"source": [ |
|
|
31 |
"# Load preprocessed datasets of top 20% and bottom 20% diverse studies\n", |
|
|
32 |
"df_top = pd.read_csv(\"t20.csv\")\n", |
|
|
33 |
"df_bottom = pd.read_csv(\"b20.csv\")" |
|
|
34 |
] |
|
|
35 |
}, |
|
|
36 |
{ |
|
|
37 |
"cell_type": "code", |
|
|
38 |
"execution_count": null, |
|
|
39 |
"metadata": { |
|
|
40 |
"colab": { |
|
|
41 |
"base_uri": "https://localhost:8080/" |
|
|
42 |
}, |
|
|
43 |
"executionInfo": { |
|
|
44 |
"elapsed": 183, |
|
|
45 |
"status": "ok", |
|
|
46 |
"timestamp": 1711119148341, |
|
|
47 |
"user": { |
|
|
48 |
"displayName": "Ojasvi Vachharajani", |
|
|
49 |
"userId": "08925121883437033531" |
|
|
50 |
}, |
|
|
51 |
"user_tz": 420 |
|
|
52 |
}, |
|
|
53 |
"id": "i2oWqy-Fiehy", |
|
|
54 |
"outputId": "599a5439-bf8a-437b-b404-10b0393e84ee" |
|
|
55 |
}, |
|
|
56 |
"outputs": [], |
|
|
57 |
"source": [ |
|
|
58 |
"set(df_top.columns) == set(df_bottom.columns)" |
|
|
59 |
] |
|
|
60 |
}, |
|
|
61 |
{ |
|
|
62 |
"cell_type": "code", |
|
|
63 |
"execution_count": null, |
|
|
64 |
"metadata": { |
|
|
65 |
"id": "sMugRtp8pli-" |
|
|
66 |
}, |
|
|
67 |
"outputs": [], |
|
|
68 |
"source": [ |
|
|
69 |
"df_top[\"success_category\"] = \"top\"\n", |
|
|
70 |
"df_bottom[\"success_category\"] = \"bottom\"\n", |
|
|
71 |
"\n", |
|
|
72 |
"df_all = pd.concat([df_top, df_bottom])" |
|
|
73 |
] |
|
|
74 |
}, |
|
|
75 |
{ |
|
|
76 |
"cell_type": "code", |
|
|
77 |
"execution_count": null, |
|
|
78 |
"metadata": { |
|
|
79 |
"colab": { |
|
|
80 |
"base_uri": "https://localhost:8080/" |
|
|
81 |
}, |
|
|
82 |
"executionInfo": { |
|
|
83 |
"elapsed": 4, |
|
|
84 |
"status": "ok", |
|
|
85 |
"timestamp": 1711119288331, |
|
|
86 |
"user": { |
|
|
87 |
"displayName": "Ojasvi Vachharajani", |
|
|
88 |
"userId": "08925121883437033531" |
|
|
89 |
}, |
|
|
90 |
"user_tz": 420 |
|
|
91 |
}, |
|
|
92 |
"id": "he-X6Ez4qCzq", |
|
|
93 |
"outputId": "b7f15feb-b680-4ca4-d754-2fd769fc0629" |
|
|
94 |
}, |
|
|
95 |
"outputs": [], |
|
|
96 |
"source": [ |
|
|
97 |
"df_all.columns" |
|
|
98 |
] |
|
|
99 |
}, |
|
|
100 |
{ |
|
|
101 |
"cell_type": "code", |
|
|
102 |
"execution_count": null, |
|
|
103 |
"metadata": { |
|
|
104 |
"colab": { |
|
|
105 |
"base_uri": "https://localhost:8080/", |
|
|
106 |
"height": 542 |
|
|
107 |
}, |
|
|
108 |
"executionInfo": { |
|
|
109 |
"elapsed": 2, |
|
|
110 |
"status": "ok", |
|
|
111 |
"timestamp": 1711119330500, |
|
|
112 |
"user": { |
|
|
113 |
"displayName": "Ojasvi Vachharajani", |
|
|
114 |
"userId": "08925121883437033531" |
|
|
115 |
}, |
|
|
116 |
"user_tz": 420 |
|
|
117 |
}, |
|
|
118 |
"id": "w4ohZwM8t3kU", |
|
|
119 |
"outputId": "033642de-9d3c-417b-f713-4ac567a3833a" |
|
|
120 |
}, |
|
|
121 |
"outputs": [], |
|
|
122 |
"source": [ |
|
|
123 |
"px.box(df_all, x=\"success_category\", y=\"num_participants\").update_layout(width=700)" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"execution_count": null, |
|
|
129 |
"metadata": { |
|
|
130 |
"colab": { |
|
|
131 |
"base_uri": "https://localhost:8080/", |
|
|
132 |
"height": 542 |
|
|
133 |
}, |
|
|
134 |
"executionInfo": { |
|
|
135 |
"elapsed": 221, |
|
|
136 |
"status": "ok", |
|
|
137 |
"timestamp": 1711119560043, |
|
|
138 |
"user": { |
|
|
139 |
"displayName": "Ojasvi Vachharajani", |
|
|
140 |
"userId": "08925121883437033531" |
|
|
141 |
}, |
|
|
142 |
"user_tz": 420 |
|
|
143 |
}, |
|
|
144 |
"id": "fvVRp9sxt3nd", |
|
|
145 |
"outputId": "4b43d996-9082-4da0-e42b-d37264c8f0ef" |
|
|
146 |
}, |
|
|
147 |
"outputs": [], |
|
|
148 |
"source": [ |
|
|
149 |
"df_num_participants = pd.concat(\n", |
|
|
150 |
" [\n", |
|
|
151 |
" df_all[[\"success_category\", \"num_male_participants\"]].assign(sex=\"male\").rename(columns={\"num_male_participants\": \"num_participants\"}),\n", |
|
|
152 |
" df_all[[\"success_category\", \"num_female_participants\"]].assign(sex=\"female\").rename(columns={\"num_female_participants\": \"num_participants\"}),\n", |
|
|
153 |
" ]\n", |
|
|
154 |
")\n", |
|
|
155 |
"\n", |
|
|
156 |
"px.box(df_num_participants, x=\"success_category\", y=\"num_participants\", color=\"sex\").update_layout(width=700)" |
|
|
157 |
] |
|
|
158 |
} |
|
|
159 |
], |
|
|
160 |
"metadata": { |
|
|
161 |
"colab": { |
|
|
162 |
"authorship_tag": "ABX9TyMDSF+xer7CPEwEYBcCijkb", |
|
|
163 |
"provenance": [] |
|
|
164 |
}, |
|
|
165 |
"kernelspec": { |
|
|
166 |
"display_name": "Python 3", |
|
|
167 |
"name": "python3" |
|
|
168 |
}, |
|
|
169 |
"language_info": { |
|
|
170 |
"name": "python" |
|
|
171 |
} |
|
|
172 |
}, |
|
|
173 |
"nbformat": 4, |
|
|
174 |
"nbformat_minor": 0 |
|
|
175 |
} |