--- a +++ b/app.py @@ -0,0 +1,55 @@ +from flask import Flask, request, jsonify, render_template +import joblib +import pandas as pd + + +app = Flask(__name__) + + +# Load the model +model = joblib.load('diabetic_patients_readmission_model.pkl') + + +# Specify the top features +top_features = [ + 'number_inpatient', 'number_emergency', 'number_diagnoses', + 'number_outpatient', 'diag_1_428', 'diabetesMed_Yes', + 'num_medications', 'time_in_hospital' +] + + +@app.route('/') +def index(): + return render_template('index.html') + + +@app.route('/predict', methods=['POST']) +def predict(): + data = request.form.to_dict(flat=True) + + # Convert string values to float and handle conversion errors + try: + data_converted = {key: float(value) for key, value in data.items()} + except ValueError: + error_message = "Please enter valid numeric values." + return render_template('index.html', error=error_message) + + # Create DataFrame from converted data + df = pd.DataFrame([data_converted], columns=top_features) + + # Check for negative values + if (df[top_features] < 0).any().any(): + error_message = "Please enter non-negative values only." + return render_template('index.html', error=error_message) + + # Replace NaN values if any + df.fillna(0, inplace=True) + + prediction = model.predict(df) + prediction_value = prediction[0].item() + + return render_template('index.html', prediction=prediction_value) + + +if __name__ == '__main__': + app.run(debug=True)