|
a |
|
b/pipeline/main300/final340clusters.py |
|
|
1 |
from __future__ import print_function |
|
|
2 |
from sklearn.decomposition import TruncatedSVD |
|
|
3 |
from sklearn.feature_extraction.text import TfidfVectorizer |
|
|
4 |
from sklearn.feature_extraction.text import HashingVectorizer |
|
|
5 |
from sklearn.feature_extraction.text import TfidfTransformer |
|
|
6 |
from sklearn.preprocessing import Normalizer |
|
|
7 |
from sklearn import metrics |
|
|
8 |
|
|
|
9 |
from sklearn.cluster import KMeans, MiniBatchKMeans |
|
|
10 |
|
|
|
11 |
import logging |
|
|
12 |
import sys |
|
|
13 |
from time import time |
|
|
14 |
|
|
|
15 |
import numpy as np |
|
|
16 |
import pandas as pd |
|
|
17 |
|
|
|
18 |
data = pd.read_csv("cleanedsmplinds.csv", sep = ",", quoting = 1, quotechar = '"') |
|
|
19 |
dataset = [] |
|
|
20 |
data = np.array(data) |
|
|
21 |
for x in data : |
|
|
22 |
count = 0 |
|
|
23 |
placeholder = "" |
|
|
24 |
for y in x : |
|
|
25 |
if (count == 2) : |
|
|
26 |
placeholder = y + ""; |
|
|
27 |
elif (count == 3) : |
|
|
28 |
if y == True : |
|
|
29 |
#dataset.append(str(1) + " " + placeholder) |
|
|
30 |
dataset.append(placeholder) |
|
|
31 |
else : |
|
|
32 |
dataset.append(placeholder) |
|
|
33 |
#dataset.append(str(0) + " " + placeholder) |
|
|
34 |
count=count+1 |
|
|
35 |
|
|
|
36 |
nb_clust = 300 |
|
|
37 |
|
|
|
38 |
vectorizer = TfidfVectorizer(max_df=0.5, max_features=10000, min_df=2, stop_words='english', use_idf=True) |
|
|
39 |
X = vectorizer.fit_transform(dataset) |
|
|
40 |
print(X.shape) |
|
|
41 |
|
|
|
42 |
km = KMeans(n_clusters=nb_clust, init='k-means++', max_iter=100, random_state=1337, n_init=1,verbose=True) |
|
|
43 |
km.fit(X) |
|
|
44 |
|
|
|
45 |
data2 = pd.read_csv("cleansmplinds.csv", sep = ",", quoting = 1, quotechar = '"') |
|
|
46 |
data2 = np.array(data2) |
|
|
47 |
|
|
|
48 |
cluster_map = pd.DataFrame() |
|
|
49 |
|
|
|
50 |
cluster_map['cluster'] = km.labels_ |
|
|
51 |
|
|
|
52 |
for x in range(nb_clust) : |
|
|
53 |
f1 = open('./final340numclusters2/clust_' + str(x) + '.txt', 'a') |
|
|
54 |
y = cluster_map[cluster_map.cluster == x]['cluster'].index |
|
|
55 |
for n in y : |
|
|
56 |
f1.write(data2[n][2]) |
|
|
57 |
f1.write("\n") |
|
|
58 |
|
|
|
59 |
f2 = open('./final340numclusters2/centers.txt', 'a') |
|
|
60 |
centers = km.cluster_centers_.argsort()[:, ::-1] |
|
|
61 |
terms = vectorizer.get_feature_names() |
|
|
62 |
for i in range(nb_clust): |
|
|
63 |
f2.write("Cluster %d:" % i) |
|
|
64 |
for ind in centers[i, :10]: |
|
|
65 |
f2.write(' %s' % terms[ind]) |
|
|
66 |
f2.write("\n") |
|
|
67 |
|