--- a +++ b/clusters/scripts/3009kcenterkm.py @@ -0,0 +1,50 @@ +from __future__ import print_function +from sklearn.decomposition import TruncatedSVD +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.feature_extraction.text import HashingVectorizer +from sklearn.feature_extraction.text import TfidfTransformer +from sklearn.preprocessing import Normalizer +from sklearn import metrics + +from sklearn.cluster import KMeans, MiniBatchKMeans, AffinityPropagation + +import logging +import sys +from time import time + +import numpy as np +import pandas as pd + +data = open("clean3009kcenters.txt", 'r').readlines() +dataset = [] +data = np.array(data) +for x in data : + dataset.append(x[:len(x)-2]) + +vectorizer = TfidfVectorizer(max_df=0.5, max_features=10000, min_df=2, stop_words='english', use_idf=True) +X = vectorizer.fit_transform(dataset) +print(X.shape) + +nb_clust = 60 + +km = KMeans(n_clusters=nb_clust, random_state=1337, init='k-means++', max_iter=300, n_init=1,verbose=True) +km.fit(X) + +f2 = open('./center3009kclusters/centers.txt', 'a') +centers = km.cluster_centers_.argsort()[:, ::-1] +terms = vectorizer.get_feature_names() +for i in range(nb_clust): + f2.write("Cluster %d:" % i) + for ind in centers[i, :10]: + f2.write(' %s' % terms[ind]) + f2.write("\n") + +cluster_map = pd.DataFrame() + +cluster_map['cluster'] = km.labels_ + +for x in range(nb_clust) : + f1 = open('./center3009kclusters/clust_' + str(x) + '.txt', 'a') + y = cluster_map[cluster_map.cluster == x]['cluster'].index + for n in y : + f1.write(data[n])