a b/model.py
1
from sklearn.svm import SVC
2
import pandas as pd
3
from sklearn.model_selection import train_test_split
4
import joblib
5
from sklearn.ensemble import RandomForestClassifier
6
import os
7
from sklearn.metrics import log_loss, ConfusionMatrixDisplay, average_precision_score, accuracy_score
8
from sklearn.metrics import roc_curve, precision_recall_curve, auc, f1_score, confusion_matrix
9
import matplotlib.pyplot as plt
10
import numpy as np
11
import pickle
12
#def read_data(path):
13
#    data = pd.read_csv(path)
14
    #data.set_index("ID_REF",inplace = True)
15
    #labels = data.pop("Result")
16
#    return data, labels
17
dataset = pd.read_csv('GenesExp1.csv')
18
dataset.set_index("ID_REF",inplace = True)
19
X = dataset.iloc[:, :20]
20
y = dataset.iloc[:, -1]
21
path_model="F:/GeneModel/"
22
#X,y=read_data("GenesExp1.csv")
23
# name="Model"
24
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=1)
25
model=RandomForestClassifier(criterion='gini', max_depth=6, min_samples_leaf=1, min_samples_split=2,
26
                       n_estimators=100)
27
model.fit(X_train, y_train)
28
29
y_pred=model.predict(X_test)
30
pickle.dump(model, open('model.pkl','wb'))
31
32
model = pickle.load(open('model.pkl','rb'))
33
print(model.predict([[11.27285579,13.11888698,13.04983865,7.160173909,11.84600012,11.38408063,12.46225539,10.35803641,10.43634604,10.31537082,8.195574032,11.00985731, 9.804574801, 7.811523898,9.271842845,8.808279933,8.473070081,8.818380484,9.115116886, 9.315489635
34
]]))