|
a |
|
b/dataWrapping.py |
|
|
1 |
import pandas |
|
|
2 |
# from pattern.en import sentiment |
|
|
3 |
# import HTMLParser |
|
|
4 |
import re |
|
|
5 |
import pandas as pd |
|
|
6 |
from collections import Counter |
|
|
7 |
from nltk.corpus import stopwords |
|
|
8 |
import string |
|
|
9 |
from collections import OrderedDict |
|
|
10 |
from nltk import bigrams |
|
|
11 |
from nltk.tokenize import word_tokenize |
|
|
12 |
import matplotlib.pyplot as plt |
|
|
13 |
import numpy as np |
|
|
14 |
# import plotly.plotly as py |
|
|
15 |
|
|
|
16 |
# import pandas as pd |
|
|
17 |
# import matplotlib.pyplot as plt |
|
|
18 |
import numpy as np |
|
|
19 |
from sklearn.metrics import recall_score, precision_score, accuracy_score |
|
|
20 |
import math |
|
|
21 |
from sklearn.feature_extraction.text import CountVectorizer |
|
|
22 |
from sklearn.model_selection import train_test_split |
|
|
23 |
from sklearn.feature_extraction.text import TfidfVectorizer |
|
|
24 |
from sklearn.naive_bayes import MultinomialNB |
|
|
25 |
from sklearn.metrics import confusion_matrix |
|
|
26 |
from sklearn.feature_selection import RFE |
|
|
27 |
import requests |
|
|
28 |
from bs4 import BeautifulSoup |
|
|
29 |
# import numpy as np |
|
|
30 |
# import matplotlib.pyplot as plt |
|
|
31 |
# from matplotlib import style |
|
|
32 |
# style.use("ggplot") |
|
|
33 |
import os |
|
|
34 |
|
|
|
35 |
data_outcome = pd.read_csv("C:\Shashank Reddy\Outcome.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python') |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
|
39 |
#print(data_outcome) |
|
|
40 |
|
|
|
41 |
data_outcome = data_outcome.fillna("zero") |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
|
47 |
# outcome dictionary |
|
|
48 |
outcome = {'removed': 1, 'not removed': 2, 'retrieval': 3, 'non retrieval': 4, 'zero' : 0} |
|
|
49 |
data_outcome["Outcome"] = [outcome[item] for item in data_outcome["Outcome"]] |
|
|
50 |
|
|
|
51 |
list_outcome = pd.DataFrame(list(data_outcome["Outcome"])) |
|
|
52 |
|
|
|
53 |
list_outcome.to_csv(r"C:\Shashank Reddy\FinalOutcome.csv",sep='\t', index=False) |
|
|
54 |
|
|
|
55 |
#print(data_outcome) |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
|
60 |
#data_outcome.to_dense().to_csv(r"C:\Shashank Reddy\FinalOutcome.csv") |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
sessilelocation = pd.read_csv("C:\Shashank Reddy\SessileLocation.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") |
|
|
64 |
#print(sessilelocation.columns.tolist()) |
|
|
65 |
#print(sessilelocation) |
|
|
66 |
|
|
|
67 |
location = {'cecal': 1, 'ascending': 2, 'ileum': 3, 'ileocecal': 3, 'hepatic': 4, 'transverse': 5, 'splenic': 6, 'descending': 7, 'sigmoid': 8, 'recto-sigmoid': 9, 'rectal': 10, 'appendix': 11,'zero': 0} |
|
|
68 |
sessilelocation["PositionA"] = [location[item] for item in sessilelocation["PositionA"]] |
|
|
69 |
sessilelocation["PositionB"] = [location[item] for item in sessilelocation["PositionB"]] |
|
|
70 |
sessilelocation["PositionC"] = [location[item] for item in sessilelocation["PositionC"]] |
|
|
71 |
sessilelocation["PositionD"] = [location[item] for item in sessilelocation["PositionD"]] |
|
|
72 |
sessilelocation["PositionE"] = [location[item] for item in sessilelocation["PositionE"]] |
|
|
73 |
sessilelocation["PositionF"] = [location[item] for item in sessilelocation["PositionF"]] |
|
|
74 |
sessilelocation["PositionG"] = [location[item] for item in sessilelocation["PositionG"]] |
|
|
75 |
|
|
|
76 |
#print(sessilelocation) |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
sessileshape = pd.read_csv("C:\Shashank Reddy\SessileShape.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") |
|
|
80 |
#print(sessileshape) |
|
|
81 |
shape = {'zero':0,'sessile':1,'pedunculated':2,'flat':3,'mass':4,'smooth':5,'serrated':6} |
|
|
82 |
|
|
|
83 |
sessileshape["Shape"] = [shape[item] for item in sessileshape["Shape"]] |
|
|
84 |
#print(sessileshape) |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
sessilesize = pd.read_csv("C:\Shashank Reddy\SessileSize.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") |
|
|
88 |
#print(sessilesize) |
|
|
89 |
|
|
|
90 |
size = {'zero':0,'diminutive':1,'small':2,'medium':3,'large':4} |
|
|
91 |
sessilesize["Size"] = [size[item] for item in sessilesize["Size"]] |
|
|
92 |
#print(sessilesize) |
|
|
93 |
|
|
|
94 |
|
|
|
95 |
sessileside = pd.read_csv("C:\Shashank Reddy\Sides.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") |
|
|
96 |
#print(sessileside) |
|
|
97 |
|
|
|
98 |
side = {'zero':0,'left':1,'right':2} |
|
|
99 |
sessileside["Sides"] = [side[item] for item in sessileside["Sides"]] |
|
|
100 |
#print(sessileside) |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
cancer_treatment = pd.read_csv("C:\Shashank Reddy\Treatment.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") |
|
|
104 |
#print(cancer_treatment) |
|
|
105 |
|
|
|
106 |
treatment = {'zero':0,'piermeal':1,'cold snare':2,'hot snare':3,'snare':4,'electocautery snare':5,'excisional biopsy':6,'biopsy forcep':7,'cold biopsy':8} |
|
|
107 |
cancer_treatment["Treatment"] = [treatment[item] for item in cancer_treatment["Treatment"]] |
|
|
108 |
|
|
|
109 |
list_treatment = pd.DataFrame(list(cancer_treatment["Treatment"])) |
|
|
110 |
|
|
|
111 |
list_treatment.to_csv(r"C:\Shashank Reddy\FinalTreatment.csv",sep='\t', index=False) |
|
|
112 |
#print(cancer_treatment) |
|
|
113 |
|
|
|
114 |
|
|
|
115 |
sessile_number = pd.read_csv("C:\Shashank Reddy\SessileNumber.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") |
|
|
116 |
#print(sessile_number) |
|
|
117 |
|
|
|
118 |
number = {'zero':0,'one':1,'two':2,'three':3,'four':4,'five':5,'six':7,'eight':8,'nine':9,'ten':10} |
|
|
119 |
|
|
|
120 |
sessile_number["Number1"] = [number[item] for item in sessile_number["Number1"]] |
|
|
121 |
sessile_number["Number2"] = [number[item] for item in sessile_number["Number2"]] |
|
|
122 |
sessile_number["Number3"] = [number[item] for item in sessile_number["Number3"]] |
|
|
123 |
sessile_number["Number4"] = [number[item] for item in sessile_number["Number4"]] |
|
|
124 |
|
|
|
125 |
#print(sessile_number) |
|
|
126 |
|
|
|
127 |
#************************************* Data Union ********************************************************************************* |
|
|
128 |
|
|
|
129 |
list_mat1= pd.DataFrame(list(sessilelocation["PositionA"])) |
|
|
130 |
list_mat2= pd.DataFrame(list(sessilelocation["PositionB"])) |
|
|
131 |
list_mat3= pd.DataFrame(list(sessilelocation["PositionC"])) |
|
|
132 |
list_mat4= pd.DataFrame(list(sessilelocation["PositionD"])) |
|
|
133 |
list_mat5= pd.DataFrame(list(sessilelocation["PositionE"])) |
|
|
134 |
list_mat6= pd.DataFrame(list(sessilelocation["PositionF"])) |
|
|
135 |
list_mat7= pd.DataFrame(list(sessilelocation["PositionG"])) |
|
|
136 |
|
|
|
137 |
list_mat8= pd.DataFrame(list(sessileshape["Shape"])) |
|
|
138 |
list_mat9= pd.DataFrame(list(sessilesize["Size"])) |
|
|
139 |
list_mat10= pd.DataFrame(list(sessileside["Sides"])) |
|
|
140 |
|
|
|
141 |
list_mat11= pd.DataFrame(list(sessile_number["Number1"])) |
|
|
142 |
list_mat12= pd.DataFrame(list(sessile_number["Number2"])) |
|
|
143 |
list_mat13= pd.DataFrame(list(sessile_number["Number3"])) |
|
|
144 |
list_mat14= pd.DataFrame(list(sessile_number["Number4"])) |
|
|
145 |
|
|
|
146 |
|
|
|
147 |
Final_Data = pd.concat([list_mat1,list_mat2,list_mat3,list_mat4,list_mat5,list_mat6,list_mat7,list_mat8,list_mat9,list_mat10,list_mat11 |
|
|
148 |
,list_mat12,list_mat13,list_mat14],axis = 1) |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
print(Final_Data) |
|
|
152 |
|
|
|
153 |
|
|
|
154 |
Final_Data.to_csv(r"C:\Shashank Reddy\DataSet_Final.csv",index = False) |
|
|
155 |
|
|
|
156 |
|
|
|
157 |
#print(Final_Data) |
|
|
158 |
|
|
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
|
164 |
|