--- a +++ b/dataWrapping.py @@ -0,0 +1,164 @@ +import pandas +# from pattern.en import sentiment +# import HTMLParser +import re +import pandas as pd +from collections import Counter +from nltk.corpus import stopwords +import string +from collections import OrderedDict +from nltk import bigrams +from nltk.tokenize import word_tokenize +import matplotlib.pyplot as plt +import numpy as np +# import plotly.plotly as py + +# import pandas as pd +# import matplotlib.pyplot as plt +import numpy as np +from sklearn.metrics import recall_score, precision_score, accuracy_score +import math +from sklearn.feature_extraction.text import CountVectorizer +from sklearn.model_selection import train_test_split +from sklearn.feature_extraction.text import TfidfVectorizer +from sklearn.naive_bayes import MultinomialNB +from sklearn.metrics import confusion_matrix +from sklearn.feature_selection import RFE +import requests +from bs4 import BeautifulSoup +# import numpy as np +# import matplotlib.pyplot as plt +# from matplotlib import style +# style.use("ggplot") +import os + +data_outcome = pd.read_csv("C:\Shashank Reddy\Outcome.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python') + + + +#print(data_outcome) + +data_outcome = data_outcome.fillna("zero") + + + + + +# outcome dictionary +outcome = {'removed': 1, 'not removed': 2, 'retrieval': 3, 'non retrieval': 4, 'zero' : 0} +data_outcome["Outcome"] = [outcome[item] for item in data_outcome["Outcome"]] + +list_outcome = pd.DataFrame(list(data_outcome["Outcome"])) + +list_outcome.to_csv(r"C:\Shashank Reddy\FinalOutcome.csv",sep='\t', index=False) + +#print(data_outcome) + + + + +#data_outcome.to_dense().to_csv(r"C:\Shashank Reddy\FinalOutcome.csv") + + +sessilelocation = pd.read_csv("C:\Shashank Reddy\SessileLocation.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") +#print(sessilelocation.columns.tolist()) +#print(sessilelocation) + +location = {'cecal': 1, 'ascending': 2, 'ileum': 3, 'ileocecal': 3, 'hepatic': 4, 'transverse': 5, 'splenic': 6, 'descending': 7, 'sigmoid': 8, 'recto-sigmoid': 9, 'rectal': 10, 'appendix': 11,'zero': 0} +sessilelocation["PositionA"] = [location[item] for item in sessilelocation["PositionA"]] +sessilelocation["PositionB"] = [location[item] for item in sessilelocation["PositionB"]] +sessilelocation["PositionC"] = [location[item] for item in sessilelocation["PositionC"]] +sessilelocation["PositionD"] = [location[item] for item in sessilelocation["PositionD"]] +sessilelocation["PositionE"] = [location[item] for item in sessilelocation["PositionE"]] +sessilelocation["PositionF"] = [location[item] for item in sessilelocation["PositionF"]] +sessilelocation["PositionG"] = [location[item] for item in sessilelocation["PositionG"]] + +#print(sessilelocation) + + +sessileshape = pd.read_csv("C:\Shashank Reddy\SessileShape.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") +#print(sessileshape) +shape = {'zero':0,'sessile':1,'pedunculated':2,'flat':3,'mass':4,'smooth':5,'serrated':6} + +sessileshape["Shape"] = [shape[item] for item in sessileshape["Shape"]] +#print(sessileshape) + + +sessilesize = pd.read_csv("C:\Shashank Reddy\SessileSize.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") +#print(sessilesize) + +size = {'zero':0,'diminutive':1,'small':2,'medium':3,'large':4} +sessilesize["Size"] = [size[item] for item in sessilesize["Size"]] +#print(sessilesize) + + +sessileside = pd.read_csv("C:\Shashank Reddy\Sides.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") +#print(sessileside) + +side = {'zero':0,'left':1,'right':2} +sessileside["Sides"] = [side[item] for item in sessileside["Sides"]] +#print(sessileside) + + +cancer_treatment = pd.read_csv("C:\Shashank Reddy\Treatment.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") +#print(cancer_treatment) + +treatment = {'zero':0,'piermeal':1,'cold snare':2,'hot snare':3,'snare':4,'electocautery snare':5,'excisional biopsy':6,'biopsy forcep':7,'cold biopsy':8} +cancer_treatment["Treatment"] = [treatment[item] for item in cancer_treatment["Treatment"]] + +list_treatment = pd.DataFrame(list(cancer_treatment["Treatment"])) + +list_treatment.to_csv(r"C:\Shashank Reddy\FinalTreatment.csv",sep='\t', index=False) +#print(cancer_treatment) + + +sessile_number = pd.read_csv("C:\Shashank Reddy\SessileNumber.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero") +#print(sessile_number) + +number = {'zero':0,'one':1,'two':2,'three':3,'four':4,'five':5,'six':7,'eight':8,'nine':9,'ten':10} + +sessile_number["Number1"] = [number[item] for item in sessile_number["Number1"]] +sessile_number["Number2"] = [number[item] for item in sessile_number["Number2"]] +sessile_number["Number3"] = [number[item] for item in sessile_number["Number3"]] +sessile_number["Number4"] = [number[item] for item in sessile_number["Number4"]] + +#print(sessile_number) + +#************************************* Data Union ********************************************************************************* + +list_mat1= pd.DataFrame(list(sessilelocation["PositionA"])) +list_mat2= pd.DataFrame(list(sessilelocation["PositionB"])) +list_mat3= pd.DataFrame(list(sessilelocation["PositionC"])) +list_mat4= pd.DataFrame(list(sessilelocation["PositionD"])) +list_mat5= pd.DataFrame(list(sessilelocation["PositionE"])) +list_mat6= pd.DataFrame(list(sessilelocation["PositionF"])) +list_mat7= pd.DataFrame(list(sessilelocation["PositionG"])) + +list_mat8= pd.DataFrame(list(sessileshape["Shape"])) +list_mat9= pd.DataFrame(list(sessilesize["Size"])) +list_mat10= pd.DataFrame(list(sessileside["Sides"])) + +list_mat11= pd.DataFrame(list(sessile_number["Number1"])) +list_mat12= pd.DataFrame(list(sessile_number["Number2"])) +list_mat13= pd.DataFrame(list(sessile_number["Number3"])) +list_mat14= pd.DataFrame(list(sessile_number["Number4"])) + + +Final_Data = pd.concat([list_mat1,list_mat2,list_mat3,list_mat4,list_mat5,list_mat6,list_mat7,list_mat8,list_mat9,list_mat10,list_mat11 + ,list_mat12,list_mat13,list_mat14],axis = 1) + + +print(Final_Data) + + +Final_Data.to_csv(r"C:\Shashank Reddy\DataSet_Final.csv",index = False) + + +#print(Final_Data) + + + + + + +