Diff of /ML Training.py [000000] .. [16d75d]

Switch to unified view

a b/ML Training.py
1
import math
2
import numpy as np
3
import h5py
4
import matplotlib.pyplot as plt
5
import tensorflow as tf
6
from tensorflow.python.framework import ops
7
from sklearn import preprocessing
8
from sklearn.preprocessing import OneHotEncoder
9
from tf_utils import load_dataset, convert_to_one_hot
10
from backwardPropagation import model
11
from keras.utils import to_categorical
12
13
X_train, X_test, y_train, y_test = load_dataset()
14
15
16
17
18
19
20
21
22
# Take transpose of the input data and also normalize it
23
24
X_train = X_train.T
25
26
X_train = (X_train - X_train.mean()) / (X_train.max() - X_train.min())
27
X_train = X_train.fillna(0)
28
X_test = X_test.T
29
30
X_test = (X_test - X_test.mean()) / (X_test.max() - X_test.min())
31
X_test = X_test.fillna(0)
32
33
34
35
36
37
38
39
40
# Convert training and test labels to one hot matrices
41
42
43
y_train = to_categorical(y_train,9)
44
y_train = y_train.T
45
46
#print(y_train)
47
#print(y_train.shape)
48
49
50
51
52
53
54
y_test = to_categorical(y_test,9)
55
y_test = y_test.T
56
57
58
#print(X_train)
59
60
#print(y_train)
61
#print(X_test)
62
#print(y_test)
63
64
65
66
67
68
parameters = model(X_train,y_train,X_test,y_test)
69
70
print(parameters["W1"])
71
72
73
74
75
76
77
78
79