|
a |
|
b/Regression RFS/FinalTestRFS.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import numpy as np\n", |
|
|
10 |
"import pandas as pd\n", |
|
|
11 |
"from sklearn.experimental import enable_iterative_imputer\n", |
|
|
12 |
"from sklearn.impute import IterativeImputer\n", |
|
|
13 |
"from sklearn.preprocessing import StandardScaler\n", |
|
|
14 |
"import pickle" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": 2, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"test_df = pd.read_excel(\"FinalTestDataset2024.xls\")" |
|
|
24 |
] |
|
|
25 |
}, |
|
|
26 |
{ |
|
|
27 |
"cell_type": "code", |
|
|
28 |
"execution_count": 3, |
|
|
29 |
"metadata": {}, |
|
|
30 |
"outputs": [], |
|
|
31 |
"source": [ |
|
|
32 |
"# Read the RandomForestClassification model using pickle\n", |
|
|
33 |
"with open(\"svr_test.pickle\", \"rb\") as f:\n", |
|
|
34 |
" SVR = pickle.load(f)" |
|
|
35 |
] |
|
|
36 |
}, |
|
|
37 |
{ |
|
|
38 |
"cell_type": "code", |
|
|
39 |
"execution_count": 4, |
|
|
40 |
"metadata": {}, |
|
|
41 |
"outputs": [], |
|
|
42 |
"source": [ |
|
|
43 |
"# Find missing values in rows\n", |
|
|
44 |
"missing_values_index = np.where(test_df == 999)[0]\n", |
|
|
45 |
"\n", |
|
|
46 |
"# Find index where missing values are more than 4\n", |
|
|
47 |
"drop_index = [\n", |
|
|
48 |
" index for index in set(missing_values_index)\n", |
|
|
49 |
" if (test_df.iloc[index] == 999).sum() >= 4\n", |
|
|
50 |
"]\n", |
|
|
51 |
"\n", |
|
|
52 |
"# Drop the rows where missing values are more than 4\n", |
|
|
53 |
"test_df = test_df.drop(drop_index).reset_index(drop=True)\n" |
|
|
54 |
] |
|
|
55 |
}, |
|
|
56 |
{ |
|
|
57 |
"cell_type": "code", |
|
|
58 |
"execution_count": 5, |
|
|
59 |
"metadata": {}, |
|
|
60 |
"outputs": [], |
|
|
61 |
"source": [ |
|
|
62 |
"ID_data = test_df['ID']\n", |
|
|
63 |
"\n", |
|
|
64 |
"# Drop the 'ID' from test_df\n", |
|
|
65 |
"test_df.drop('ID', axis=1, inplace=True)" |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"execution_count": 6, |
|
|
71 |
"metadata": {}, |
|
|
72 |
"outputs": [], |
|
|
73 |
"source": [ |
|
|
74 |
"# Replace 999 with Nan\n", |
|
|
75 |
"missing_values_index = np.where(test_df == 999)\n", |
|
|
76 |
"new_df = test_df.replace(999, np.NaN)\n", |
|
|
77 |
"\n", |
|
|
78 |
"# И IterativeImputer\n", |
|
|
79 |
"multivariate_imp = IterativeImputer(random_state=42)\n", |
|
|
80 |
"multi_imputed_array = multivariate_imp.fit_transform(new_df)\n", |
|
|
81 |
"\n", |
|
|
82 |
"# Round imputed values\n", |
|
|
83 |
"for row, col in zip(*missing_values_index):\n", |
|
|
84 |
" multi_imputed_array[row, col] = np.round(multi_imputed_array[row, col])\n", |
|
|
85 |
"\n", |
|
|
86 |
"# Create a DataFrame from the imputed array, with the columns and index of original dataframe\n", |
|
|
87 |
"multi_imputed_df = pd.DataFrame(multi_imputed_array, columns=test_df.columns)\n" |
|
|
88 |
] |
|
|
89 |
}, |
|
|
90 |
{ |
|
|
91 |
"cell_type": "code", |
|
|
92 |
"execution_count": 7, |
|
|
93 |
"metadata": {}, |
|
|
94 |
"outputs": [], |
|
|
95 |
"source": [ |
|
|
96 |
"# Feature which we found using feature selection in the training dataset\n", |
|
|
97 |
"feature_selection_list = ['original_shape_Maximum2DDiameterColumn', 'original_firstorder_90Percentile', 'original_glcm_JointEntropy', 'original_glcm_Imc1', 'original_gldm_SmallDependenceLowGrayLevelEmphasis', 'original_firstorder_Minimum', 'original_glrlm_RunPercentage', 'original_firstorder_Variance', 'ChemoGrade', 'original_shape_LeastAxisLength', 'original_shape_Maximum2DDiameterSlice', 'TumourStage', 'original_shape_Sphericity', 'original_glszm_SizeZoneNonUniformity', 'original_firstorder_Range', 'original_glcm_SumEntropy', 'original_firstorder_RootMeanSquared', 'original_shape_Maximum2DDiameterRow', 'original_glcm_JointEnergy', 'Gene', 'original_gldm_DependenceNonUniformityNormalized', 'original_glszm_SmallAreaHighGrayLevelEmphasis', 'original_shape_Maximum3DDiameter', 'original_firstorder_MeanAbsoluteDeviation', 'original_shape_MinorAxisLength', 'original_glszm_ZoneEntropy', 'original_glcm_MaximumProbability', 'original_firstorder_10Percentile', 'original_gldm_LargeDependenceHighGrayLevelEmphasis', 'original_firstorder_Maximum', 'original_glszm_SizeZoneNonUniformityNormalized', 'ER', 'original_firstorder_Kurtosis', 'HER2', 'original_firstorder_RobustMeanAbsoluteDeviation', 'original_shape_MajorAxisLength', 'original_shape_Elongation', 'original_glszm_LowGrayLevelZoneEmphasis', 'Age', 'original_glcm_SumSquares', 'original_firstorder_Skewness', 'original_glrlm_ShortRunHighGrayLevelEmphasis', 'original_gldm_SmallDependenceHighGrayLevelEmphasis', 'original_firstorder_InterquartileRange']\n", |
|
|
98 |
"\n", |
|
|
99 |
"feature_selected = multi_imputed_df[feature_selection_list]\n" |
|
|
100 |
] |
|
|
101 |
}, |
|
|
102 |
{ |
|
|
103 |
"cell_type": "code", |
|
|
104 |
"execution_count": 8, |
|
|
105 |
"metadata": {}, |
|
|
106 |
"outputs": [], |
|
|
107 |
"source": [ |
|
|
108 |
"scaler = StandardScaler()\n", |
|
|
109 |
"Xs_train = scaler.fit_transform(feature_selected)" |
|
|
110 |
] |
|
|
111 |
}, |
|
|
112 |
{ |
|
|
113 |
"cell_type": "code", |
|
|
114 |
"execution_count": 9, |
|
|
115 |
"metadata": {}, |
|
|
116 |
"outputs": [], |
|
|
117 |
"source": [ |
|
|
118 |
"predictions = SVR.predict(Xs_train)\n" |
|
|
119 |
] |
|
|
120 |
}, |
|
|
121 |
{ |
|
|
122 |
"cell_type": "code", |
|
|
123 |
"execution_count": 12, |
|
|
124 |
"metadata": {}, |
|
|
125 |
"outputs": [], |
|
|
126 |
"source": [ |
|
|
127 |
"target_df = pd.DataFrame({'ID': ID_data, 'RelapseFreeSurvival (outcome)': predictions})\n", |
|
|
128 |
"target_df.to_csv('RFSPrediction.csv', index=False)" |
|
|
129 |
] |
|
|
130 |
} |
|
|
131 |
], |
|
|
132 |
"metadata": { |
|
|
133 |
"kernelspec": { |
|
|
134 |
"display_name": "base", |
|
|
135 |
"language": "python", |
|
|
136 |
"name": "python3" |
|
|
137 |
}, |
|
|
138 |
"language_info": { |
|
|
139 |
"codemirror_mode": { |
|
|
140 |
"name": "ipython", |
|
|
141 |
"version": 3 |
|
|
142 |
}, |
|
|
143 |
"file_extension": ".py", |
|
|
144 |
"mimetype": "text/x-python", |
|
|
145 |
"name": "python", |
|
|
146 |
"nbconvert_exporter": "python", |
|
|
147 |
"pygments_lexer": "ipython3", |
|
|
148 |
"version": "3.12.2" |
|
|
149 |
} |
|
|
150 |
}, |
|
|
151 |
"nbformat": 4, |
|
|
152 |
"nbformat_minor": 2 |
|
|
153 |
} |