[6b894f]: / Predict.py

Download this file

65 lines (54 with data), 1.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import pandas as pd
import numpy as np
import csv
import glob
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from xgboost import XGBClassifier
def process(path,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10):
data=pd.read_csv(path)
label_encoder = preprocessing.LabelEncoder()
data['Diagnosis']= label_encoder.fit_transform(data['Diagnosis'])
data['Gen']= label_encoder.fit_transform(data['Genero'])
X=data[['Age', 'Weight (Kg)', 'Height (cms)', 'Gen','Heart Rate', 'oxygen saturation', 'Respiratory Rate','Systolic Blood Pressure', 'Diastolic Blood Pressure','Mean Blood Pressure']]
y=data['Diagnosis']
l=[]
#l.append("eswar")
l.append(a1)
l.append(a2)
l.append(a3)
l.append(a4)
l.append(a5)
l.append(a6)
l.append(a7)
l.append(a8)
l.append(a9)
l.append(a10)
#l.append(a11)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model2=XGBClassifier(objective='multi:softprob')
X_test =pd.DataFrame([l])
print("Testing data",X_test)
model2.fit(X_train, y_train)
y_pred = model2.predict(X_test)
print("predicted")
print(y_pred)
result=""
treat=""
if y_pred[0]==0:
result="Stage Normal"
treat="dexrazoxane is no longer contraindicated"
elif y_pred[0]==1:
result="Stage Mild"
treat="Adeno-associated virus gene therapy"
elif y_pred[0]==2:
result="Stage Moderate"
treat="anti–interleukin-6 receptor antagonist such as tocilizumab "
elif y_pred[0]==3:
result="Stage Severe"
treat="Immediate surgey need to given"
else:
result="No Disease"
return result,treat