--- a +++ b/Predict.py @@ -0,0 +1,64 @@ +import os +import pandas as pd +import numpy as np +import csv +import glob +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import train_test_split +from sklearn import preprocessing +from xgboost import XGBClassifier + +def process(path,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10): + data=pd.read_csv(path) + label_encoder = preprocessing.LabelEncoder() + data['Diagnosis']= label_encoder.fit_transform(data['Diagnosis']) + data['Gen']= label_encoder.fit_transform(data['Genero']) + X=data[['Age', 'Weight (Kg)', 'Height (cms)', 'Gen','Heart Rate', 'oxygen saturation', 'Respiratory Rate','Systolic Blood Pressure', 'Diastolic Blood Pressure','Mean Blood Pressure']] + y=data['Diagnosis'] + l=[] + #l.append("eswar") + l.append(a1) + l.append(a2) + l.append(a3) + l.append(a4) + l.append(a5) + l.append(a6) + l.append(a7) + l.append(a8) + l.append(a9) + l.append(a10) + + #l.append(a11) + + + + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) + model2=XGBClassifier(objective='multi:softprob') + X_test =pd.DataFrame([l]) + print("Testing data",X_test) + model2.fit(X_train, y_train) + y_pred = model2.predict(X_test) + print("predicted") + print(y_pred) + result="" + treat="" + if y_pred[0]==0: + result="Stage Normal" + treat="dexrazoxane is no longer contraindicated" + elif y_pred[0]==1: + result="Stage Mild" + treat="Adeno-associated virus gene therapy" + + elif y_pred[0]==2: + result="Stage Moderate" + treat="anti–interleukin-6 receptor antagonist such as tocilizumab " + elif y_pred[0]==3: + result="Stage Severe" + treat="Immediate surgey need to given" + else: + result="No Disease" + return result,treat + + +