Diff of /src/processLabels.py [000000] .. [e9ece0]

Switch to unified view

a b/src/processLabels.py
1
""" 
2
Copyright (c) 2016, Jose Dolz .All rights reserved.
3
Redistribution and use in source and binary forms, with or without modification,
4
are permitted provided that the following conditions are met:
5
    1. Redistributions of source code must retain the above copyright notice,
6
       this list of conditions and the following disclaimer.
7
    2. Redistributions in binary form must reproduce the above copyright notice,
8
       this list of conditions and the following disclaimer in the documentation
9
       and/or other materials provided with the distribution.
10
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11
    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
12
    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13
    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
14
    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
15
    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
16
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
17
    OTHER DEALINGS IN THE SOFTWARE.
18
Jose Dolz. Dec, 2016.
19
email: jose.dolz.upv@gmail.com
20
LIVIA Department, ETS, Montreal.
21
"""
22
23
import sys
24
import pdb
25
from os.path import isfile, join
26
import os
27
import numpy as np
28
import nibabel as nib
29
import scipy.io as sio
30
31
from LiviaNet.Modules.IO.loadData import load_nii
32
from LiviaNet.Modules.IO.loadData import load_matlab
33
from LiviaNet.Modules.IO.saveData import saveImageAsNifti
34
from LiviaNet.Modules.IO.saveData import saveImageAsMatlab
35
36
# NOTE: Only has been tried on nifti images. However, it should not give any error for Matlab images. 
37
""" To print function usage """
38
def printUsage(error_type):
39
    if error_type == 1:
40
        print(" ** ERROR!!: Few parameters used.")
41
    else:
42
        print(" ** ERROR!!: ...") # TODO
43
        
44
    print(" ******** USAGE ******** ")
45
    print(" --- argv 1: Folder containing label images")
46
    print(" --- argv 2: Folder to save corrected label images")
47
    print(" --- argv 3: Number of expected classes (including background)")
48
    print(" --- argv 4: Image type")
49
    print(" ------------- 0: nifti format")
50
    print(" ------------- 1: matlab format")
51
52
def getImageImageList(imagesFolder):
53
    if os.path.exists(imagesFolder):
54
       imageNames = [f for f in os.listdir(imagesFolder) if isfile(join(imagesFolder, f))]
55
56
    imageNames.sort()
57
58
    return imageNames
59
    
60
def checkAnotatedLabels(argv):
61
    # Number of input arguments
62
    #    1: Folder containing label images
63
    #    2: Folder to save corrected label images
64
    #    3: Number of expected classes (including background)
65
    #    4: Image type
66
    #             0: nifti format
67
    #             1: matlab format  
68
    # Do some sanity checks
69
    
70
    if len(argv) < 4:
71
        printUsage(1)
72
        sys.exit()
73
    
74
    imagesFolder = argv[0]
75
    imagesFolderdst  = argv[1]
76
    numClasses = int(argv[2])
77
    imageType = int(argv[3])
78
    
79
    imageNames = getImageImageList(imagesFolder)
80
    printFileNames = False
81
    
82
    for i_d in xrange(0, len(imageNames)) :
83
        if imageType == 0:
84
            imageFileName = imagesFolder + '/' + imageNames[i_d]
85
            [imageData,img_proxy] = load_nii(imageFileName, printFileNames)
86
        else:
87
            imageFileName = imagesFolder + '/' + imageNames[i_d]
88
            imageData = load_matlab(imageFileName, printFileNames)
89
90
        labelsOrig = np.unique(imageData)
91
92
        if (len(labelsOrig) != numClasses):
93
            print(" WARNING!!!!! Number of expected clases ({}) is different to found labels ({}) ".format(numClasses,len(labelsOrig)))
94
95
        # Correct labels
96
        labelCorrectedImage = np.zeros(imageData.shape,dtype=np.int8)
97
        for i_l in xrange(0,len(labelsOrig)):
98
            idx = np.where(imageData == labelsOrig[i_l])
99
            labelCorrectedImage[idx] = i_l
100
101
        
102
        print(" ... Saving labels...")
103
        nameToSave =  imagesFolderdst + '/' + imageNames[i_d]
104
        if imageType == 0: # nifti
105
            imageTypeToSave = np.dtype(np.int8)
106
            saveImageAsNifti(labelCorrectedImage,
107
                             nameToSave,
108
                             imageFileName,
109
                             imageTypeToSave)
110
        else: # Matlab
111
            # Cast to int8 for saving purposes
112
            saveImageAsMatlab(labelCorrectedImage.astype('int8'),nameToSave)
113
114
            
115
    print " ******************************************  PROCESSING LABELS DONE  ******************************************"
116
  
117
   
118
if __name__ == '__main__':
119
   checkAnotatedLabels(sys.argv[1:])