|
a |
|
b/src/LiviaNet/Modules/IO/loadData.py |
|
|
1 |
""" |
|
|
2 |
Copyright (c) 2016, Jose Dolz .All rights reserved. |
|
|
3 |
|
|
|
4 |
Redistribution and use in source and binary forms, with or without modification, |
|
|
5 |
are permitted provided that the following conditions are met: |
|
|
6 |
|
|
|
7 |
1. Redistributions of source code must retain the above copyright notice, |
|
|
8 |
this list of conditions and the following disclaimer. |
|
|
9 |
2. Redistributions in binary form must reproduce the above copyright notice, |
|
|
10 |
this list of conditions and the following disclaimer in the documentation |
|
|
11 |
and/or other materials provided with the distribution. |
|
|
12 |
|
|
|
13 |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
|
14 |
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
|
|
15 |
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
|
16 |
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
|
|
17 |
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
|
|
18 |
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
|
|
19 |
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
|
|
20 |
OTHER DEALINGS IN THE SOFTWARE. |
|
|
21 |
|
|
|
22 |
Jose Dolz. Dec, 2016. |
|
|
23 |
email: jose.dolz.upv@gmail.com |
|
|
24 |
LIVIA Department, ETS, Montreal. |
|
|
25 |
""" |
|
|
26 |
|
|
|
27 |
import numpy as np |
|
|
28 |
import pdb |
|
|
29 |
# If you are not using nifti files you can comment this line |
|
|
30 |
import nibabel as nib |
|
|
31 |
import scipy.io as sio |
|
|
32 |
|
|
|
33 |
from ImgOperations.imgOp import applyPadding |
|
|
34 |
|
|
|
35 |
# ----- Loader for nifti files ------ # |
|
|
36 |
def load_nii (imageFileName, printFileNames) : |
|
|
37 |
if printFileNames == True: |
|
|
38 |
print (" ... Loading file: {}".format(imageFileName)) |
|
|
39 |
|
|
|
40 |
img_proxy = nib.load(imageFileName) |
|
|
41 |
imageData = img_proxy.get_data() |
|
|
42 |
|
|
|
43 |
return (imageData,img_proxy) |
|
|
44 |
|
|
|
45 |
def release_nii_proxy(img_proxy) : |
|
|
46 |
img_proxy.uncache() |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
# ----- Loader for matlab format ------- # |
|
|
50 |
# Very important: All the volumes should have been saved as 'vol'. |
|
|
51 |
# Otherwise, change its name here |
|
|
52 |
def load_matlab (imageFileName, printFileNames) : |
|
|
53 |
if printFileNames == True: |
|
|
54 |
print (" ... Loading file: {}".format(imageFileName)) |
|
|
55 |
|
|
|
56 |
mat_contents = sio.loadmat(imageFileName) |
|
|
57 |
imageData = mat_contents['vol'] |
|
|
58 |
|
|
|
59 |
return (imageData) |
|
|
60 |
|
|
|
61 |
""" It loads the images (CT/MRI + Ground Truth + ROI) for the patient image Idx""" |
|
|
62 |
def load_imagesSinglePatient(imageIdx, |
|
|
63 |
imageNames, |
|
|
64 |
groundTruthNames, |
|
|
65 |
roiNames, |
|
|
66 |
applyPaddingBool, |
|
|
67 |
receptiveField, |
|
|
68 |
sampleSizes, |
|
|
69 |
imageType |
|
|
70 |
): |
|
|
71 |
|
|
|
72 |
if imageIdx >= len(imageNames) : |
|
|
73 |
print (" ERROR!!!!! : The image index specified is greater than images array size....)") |
|
|
74 |
exit(1) |
|
|
75 |
|
|
|
76 |
# --- Load image data (CT/MRI/...) --- |
|
|
77 |
printFileNames = False # Get this from config.ini |
|
|
78 |
|
|
|
79 |
imageFileName = imageNames[imageIdx] |
|
|
80 |
|
|
|
81 |
if imageType == 0: |
|
|
82 |
[imageData,img_proxy] = load_nii(imageFileName, printFileNames) |
|
|
83 |
else: |
|
|
84 |
imageData = load_matlab(imageFileName, printFileNames) |
|
|
85 |
|
|
|
86 |
if applyPaddingBool == True : |
|
|
87 |
[imageData, paddingValues] = applyPadding(imageData, sampleSizes, receptiveField) |
|
|
88 |
else: |
|
|
89 |
paddingValues = ((0,0),(0,0),(0,0)) |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
if len(imageData.shape) > 3 : |
|
|
93 |
imageData = imageData[:,:,:,0] |
|
|
94 |
|
|
|
95 |
if imageType == 0: |
|
|
96 |
release_nii_proxy(img_proxy) |
|
|
97 |
|
|
|
98 |
# --- Load ground truth (i.e. labels) --- |
|
|
99 |
if len(groundTruthNames) > 0 : |
|
|
100 |
GTFileName = groundTruthNames[imageIdx] |
|
|
101 |
|
|
|
102 |
if imageType == 0: |
|
|
103 |
[gtLabelsData, gt_proxy] = load_nii (GTFileName, printFileNames) |
|
|
104 |
else: |
|
|
105 |
gtLabelsData = load_matlab(GTFileName, printFileNames) |
|
|
106 |
|
|
|
107 |
# Convert ground truth to int type |
|
|
108 |
if np.issubdtype( gtLabelsData.dtype, np.int ) : |
|
|
109 |
gtLabelsData = gtLabelsData |
|
|
110 |
else: |
|
|
111 |
np.rint(gtLabelsData).astype("int32") |
|
|
112 |
|
|
|
113 |
imageGtLabels = gtLabelsData |
|
|
114 |
|
|
|
115 |
if imageType == 0: |
|
|
116 |
# Release data |
|
|
117 |
release_nii_proxy(gt_proxy) |
|
|
118 |
|
|
|
119 |
if applyPaddingBool == True : |
|
|
120 |
[imageGtLabels, paddingValues] = applyPadding(imageGtLabels, sampleSizes, receptiveField) |
|
|
121 |
|
|
|
122 |
else : |
|
|
123 |
imageGtLabels = np.empty(0) |
|
|
124 |
|
|
|
125 |
# --- Load roi --- |
|
|
126 |
if len(roiNames)> 0 : |
|
|
127 |
roiFileName = roiNames[imageIdx] |
|
|
128 |
|
|
|
129 |
if imageType == 0: |
|
|
130 |
[roiMaskData, roi_proxy] = load_nii (roiFileName, printFileNames) |
|
|
131 |
else: |
|
|
132 |
roiMaskData = load_matlab(roiFileName, printFileNames) |
|
|
133 |
|
|
|
134 |
roiMask = roiMaskData |
|
|
135 |
|
|
|
136 |
if imageType == 0: |
|
|
137 |
# Release data |
|
|
138 |
release_nii_proxy(roi_proxy) |
|
|
139 |
|
|
|
140 |
if applyPaddingBool == True : |
|
|
141 |
[roiMask, paddingValues] = applyPadding(roiMask, sampleSizes, receptiveField) |
|
|
142 |
else : |
|
|
143 |
roiMask = np.ones(imageGtLabels.shape) |
|
|
144 |
|
|
|
145 |
return [imageData, imageGtLabels, roiMask, paddingValues] |
|
|
146 |
|
|
|
147 |
|
|
|
148 |
# -------------------------------------------------------- # |
|
|
149 |
def getRandIndexes(total, maxNumberIdx) : |
|
|
150 |
# Generate a shuffle array of a vector containing "total" elements |
|
|
151 |
idxs = range(total) |
|
|
152 |
np.random.shuffle(idxs) |
|
|
153 |
rand_idxs = idxs[0:maxNumberIdx] |
|
|
154 |
return rand_idxs |
|
|
155 |
|