Switch to unified view

a b/src/LiviaNet/LiviaSoftmax.py
1
""" 
2
Copyright (c) 2016, Jose Dolz .All rights reserved.
3
4
Redistribution and use in source and binary forms, with or without modification,
5
are permitted provided that the following conditions are met:
6
7
    1. Redistributions of source code must retain the above copyright notice,
8
       this list of conditions and the following disclaimer.
9
    2. Redistributions in binary form must reproduce the above copyright notice,
10
       this list of conditions and the following disclaimer in the documentation
11
       and/or other materials provided with the distribution.
12
13
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
14
    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
15
    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16
    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
17
    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
18
    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20
    OTHER DEALINGS IN THE SOFTWARE.
21
22
Jose Dolz. Dec, 2016.
23
email: jose.dolz.upv@gmail.com
24
LIVIA Department, ETS, Montreal.
25
"""
26
27
import numpy as np
28
import theano
29
import theano.tensor as T
30
from theano.tensor.nnet import conv2d
31
import theano.tensor.nnet.conv3d2d
32
33
from LiviaNet3DConvLayer import LiviaNet3DConvLayer
34
from Modules.General.Utils import initializeWeights
35
from Modules.NeuralNetwork.ActivationFunctions import *
36
from Modules.NeuralNetwork.layerOperations import *
37
38
class LiviaSoftmax(LiviaNet3DConvLayer):
39
    """ Final Classification layer with Softmax """
40
    
41
    def __init__(self,
42
                 rng,
43
                 layerID,
44
                 inputSample_Train,
45
                 inputSample_Test,
46
                 inputToLayerShapeTrain,
47
                 inputToLayerShapeTest,
48
                 filterShape,
49
                 applyBatchNorm, 
50
                 applyBatchNormNumberEpochs, 
51
                 maxPoolingParameters,
52
                 weights_initialization,
53
                 weights,
54
                 activationType=0,
55
                 dropoutRate=0.0,
56
                 softmaxTemperature = 1.0) :
57
58
        LiviaNet3DConvLayer.__init__(self,
59
                                     rng,
60
                                     layerID,
61
                                     inputSample_Train,
62
                                     inputSample_Test,
63
                                     inputToLayerShapeTrain,
64
                                     inputToLayerShapeTest,
65
                                     filterShape,
66
                                     applyBatchNorm, 
67
                                     applyBatchNormNumberEpochs, 
68
                                     maxPoolingParameters,
69
                                     weights_initialization,
70
                                     weights,
71
                                     activationType,
72
                                     dropoutRate)
73
        
74
        self._numberOfOutputClasses = None
75
        self._bClassLayer = None        
76
        self._softmaxTemperature = None
77
        
78
        self._numberOfOutputClasses = filterShape[0]
79
        self._softmaxTemperature = softmaxTemperature
80
81
        # Define outputs
82
        outputOfConvTrain = self.outputTrain
83
        outputOfConvTest = self.outputTest
84
85
        # define outputs shapes
86
        outputOfConvShapeTrain = self.outputShapeTrain
87
        outputOfConvShapeTest = self.outputShapeTest
88
        
89
90
        # Add bias before applying the softmax
91
        b_values = np.zeros( (self._numberOfFeatureMaps), dtype = 'float32')
92
        self._bClassLayer = theano.shared(value=b_values, borrow=True)
93
    
94
        inputToSoftmaxTrain = applyBiasToFeatureMaps( self._bClassLayer, outputOfConvTrain )
95
        inputToSoftmaxTest = applyBiasToFeatureMaps( self._bClassLayer, outputOfConvTest ) 
96
97
        self.params = self.params + [self._bClassLayer]
98
        
99
        # ============ Apply Softmax ==============
100
        # Training samples
101
        ( self.p_y_given_x_train, self.y_pred_train ) = applySoftMax(inputToSoftmaxTrain,
102
                                                                     outputOfConvShapeTrain,
103
                                                                     self._numberOfOutputClasses,
104
                                                                     softmaxTemperature)
105
106
        # Testing samples
107
        ( self.p_y_given_x_test, self.y_pred_test ) = applySoftMax(inputToSoftmaxTest,
108
                                                                   outputOfConvShapeTest,
109
                                                                   self._numberOfOutputClasses,
110
                                                                   softmaxTemperature)
111
        
112
        
113
    def negativeLogLikelihoodWeighted(self, y, weightPerClass):      
114
        #Weighting the cost of the different classes in the cost-function, in order to counter class imbalance.
115
        e1 = np.finfo(np.float32).tiny
116
        addTinyProbMatrix = T.lt(self.p_y_given_x_train, 4*e1) * e1
117
        
118
        weights = weightPerClass.dimshuffle('x', 0, 'x', 'x', 'x')
119
        log_p_y_given_x_train = T.log(self.p_y_given_x_train + addTinyProbMatrix) 
120
        weighted_log_probs = log_p_y_given_x_train * weights
121
   
122
        wShape =  weighted_log_probs.shape
123
124
        # Re-arrange 
125
        idx0 = T.arange( wShape[0] ).dimshuffle( 0, 'x','x','x')
126
        idx2 = T.arange( wShape[2] ).dimshuffle('x', 0, 'x','x')
127
        idx3 = T.arange( wShape[3] ).dimshuffle('x','x', 0, 'x')
128
        idx4 = T.arange( wShape[4] ).dimshuffle('x','x','x', 0)
129
        
130
        return -T.mean( weighted_log_probs[ idx0, y, idx2, idx3, idx4] )
131
    
132
    
133
    def predictionProbabilities(self) :
134
        return self.p_y_given_x_test