"""
Copyright (c) 2016, Jose Dolz .All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
Jose Dolz. Dec, 2016.
email: jose.dolz.upv@gmail.com
LIVIA Department, ETS, Montreal.
"""
import theano
import theano.tensor as T
from theano.tensor.nnet import conv2d
import theano.tensor.nnet.conv3d2d
import pdb
import sys
import os
import numpy as np
import numpy
import random
from Modules.General.Utils import initializeWeights
from Modules.NeuralNetwork.ActivationFunctions import *
from Modules.NeuralNetwork.layerOperations import *
#################################################################
# Layer Types #
#################################################################
class LiviaNet3DConvLayer(object):
"""Convolutional Layer of the Livia network """
def __init__(self,
rng,
layerID,
inputSample_Train,
inputSample_Test,
inputToLayerShapeTrain,
inputToLayerShapeTest,
filterShape,
useBatchNorm,
numberEpochApplyRolling,
maxPoolingParameters,
weights_initMethodType,
weights,
activationType,
dropoutRate=0.0) :
self.inputTrain = None
self.inputTest = None
self.inputShapeTrain = None
self.inputShapeTest = None
self._numberOfFeatureMaps = 0
self._maxPoolingParameters = None
self._appliedBnInLayer = None
self.params = []
self.W = None
self._gBn = None
self._b = None
self._aPrelu = None
self.numberOfTrainableParams = 0
self.muBatchNorm = None
self._varBnsArrayForRollingAverage = None
self.numberEpochApplyRolling = numberEpochApplyRolling
self.rollingIndex = 0
self._sharedNewMu_B = None
self._sharedNewVar_B = None
self._newMu_B = None
self._newVar_B = None
self.outputTrain = None
self.outputTest = None
self.outputShapeTrain = None
self.outputShapeTest = None
# === After all the parameters has been initialized, create the layer
# Set all the inputs and parameters
self.inputTrain = inputSample_Train
self.inputTest = inputSample_Test
self.inputShapeTrain = inputToLayerShapeTrain
self.inputShapeTest = inputToLayerShapeTest
self._numberOfFeatureMaps = filterShape[0]
assert self.inputShapeTrain[1] == filterShape[1]
self._maxPoolingParameters = maxPoolingParameters
print(" --- [STATUS] --------- Creating layer {} --------- ".format(layerID))
## Process the input layer through all the steps over the block
(inputToConvTrain,
inputToConvTest) = self.passInputThroughLayerElements(inputSample_Train,
inputToLayerShapeTrain,
inputSample_Test,
inputToLayerShapeTest,
useBatchNorm,
numberEpochApplyRolling,
activationType,
weights,
dropoutRate,
rng
)
# input shapes for the convolutions
inputToConvShapeTrain = inputToLayerShapeTrain
inputToConvShapeTest = inputToLayerShapeTest
# -------------- Weights initialization -------------
# Initialize weights with random weights if W is empty
# Otherwise, use loaded weights
self.W = initializeWeights(filterShape,
weights_initMethodType,
weights)
self.params = [self.W] + self.params
self.numberOfTrainableParams += 1
##---------- Convolve --------------
(convolvedOutput_Train, convolvedOutputShape_Train) = convolveWithKernel(self.W, filterShape, inputToConvTrain, inputToConvShapeTrain)
(convolvedOutput_Test, convolvedOutputShape_Test) = convolveWithKernel(self.W , filterShape, inputToConvTest, inputToConvShapeTest)
self.outputTrain = convolvedOutput_Train
self.outputTest = convolvedOutput_Test
self.outputShapeTrain = convolvedOutputShape_Train
self.outputShapeTest = convolvedOutputShape_Test
def updateLayerMatricesBatchNorm(self):
if self._appliedBnInLayer :
muArrayValue = self.muBatchNorm.get_value()
muArrayValue[self.rollingIndex] = self._sharedNewMu_B.get_value()
self.muBatchNorm.set_value(muArrayValue, borrow=True)
varArrayValue = self._varBnsArrayForRollingAverage.get_value()
varArrayValue[self.rollingIndex] = self._sharedNewVar_B.get_value()
self._varBnsArrayForRollingAverage.set_value(varArrayValue, borrow=True)
self.rollingIndex = (self.rollingIndex + 1) % self.numberEpochApplyRolling
def getUpdatesForBnRollingAverage(self) :
if self._appliedBnInLayer :
return [(self._sharedNewMu_B, self._newMu_B),
(self._sharedNewVar_B, self._newVar_B) ]
else :
return []
def passInputThroughLayerElements(self,
inputSample_Train,
inputSampleShape_Train,
inputSample_Test,
inputSampleShape_Test,
useBatchNorm,
numberEpochApplyRolling,
activationType,
weights,
dropoutRate,
rndState):
""" Through each block the following steps are applied, according to Kamnitsas:
1 - Batch Normalization or biases
2 - Activation function
3 - Dropout
4 - (Optional) Max pooling
Ref: He et al "Identity Mappings in Deep Residual Networks" 2016
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua """
# ________________________________________________________
# 1 : Batch Normalization
# ________________________________________________________
""" Implemenation taken from Kamnitsas work.
A batch normalization implementation in TensorFlow:
http://r2rt.com/implementing-batch-normalization-in-tensorflow.html
"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift",
Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015.
Journal of Machine Learning Research: W&CP volume 37
"""
if useBatchNorm > 0 :
self._appliedBnInLayer = True
(inputToNonLinearityTrain,
inputToNonLinearityTest,
self._gBn,
self._b,
self.muBatchNorm,
self._varBnsArrayForRollingAverage,
self._sharedNewMu_B,
self._sharedNewVar_B,
self._newMu_B,
self._newVar_B) = applyBn( numberEpochApplyRolling,
inputSample_Train,
inputSample_Test,
inputSampleShape_Train)
self.params = self.params + [self._gBn, self._b]
else :
self._appliedBnInLayer = False
numberOfInputFeatMaps = inputSampleShape_Train[1]
b_values = np.zeros( (self._numberOfFeatureMaps), dtype = 'float32')
self._b = theano.shared(value=b_values, borrow=True)
inputToNonLinearityTrain = applyBiasToFeatureMaps( self._b, inputSample_Train )
inputToNonLinearityTest = applyBiasToFeatureMaps( self._b, inputSample_Test )
self.params = self.params + [self._b]
# ________________________________________________________
# 2 : Apply the corresponding activation function
# ________________________________________________________
def Linear():
print " --- Activation function: Linear"
self.activationFunctionType = "Linear"
output_Train = inputToNonLinearityTrain
output_Test = inputToNonLinearityTest
return (output_Train, output_Test)
def ReLU():
print " --- Activation function: ReLU"
self.activationFunctionType = "ReLU"
output_Train = applyActivationFunction_ReLU_v1(inputToNonLinearityTrain)
output_Test = applyActivationFunction_ReLU_v1(inputToNonLinearityTest)
return (output_Train, output_Test)
def PReLU():
print " --- Activation function: PReLU"
self.activationFunctionType = "PReLU"
numberOfInputFeatMaps = inputSampleShape_Train[1]
PReLU_Values = np.ones( (numberOfInputFeatMaps), dtype = 'float32' )*0.01
self._aPrelu = theano.shared(value=PReLU_Values, borrow=True)
output_Train = applyActivationFunction_PReLU(inputToNonLinearityTrain, self._aPrelu)
output_Test = applyActivationFunction_PReLU(inputToNonLinearityTest, self._aPrelu)
self.params = self.params + [self._aPrelu]
self.numberOfTrainableParams += 1
return (output_Train,output_Test)
def LeakyReLU():
print " --- Activation function: Leaky ReLU "
self.activationFunctionType = "Leky ReLU"
leakiness = 0.2 # TODO. Introduce this value in the config.ini
output_Train = applyActivationFunction_LeakyReLU(inputToNonLinearityTrain,leakiness)
output_Test = applyActivationFunction_LeakyReLU(inputToNonLinearityTest,leakiness)
return (output_Train, output_Test)
optionsActFunction = {0 : Linear,
1 : ReLU,
2 : PReLU,
3 : LeakyReLU}
(inputToDropout_Train, inputToDropout_Test) = optionsActFunction[activationType]()
# ________________________________________________________
# 3 : Apply Dropout
# ________________________________________________________
output_Train = apply_Dropout(rndState,dropoutRate,inputSampleShape_Train,inputToDropout_Train, 0)
output_Test = apply_Dropout(rndState,dropoutRate,inputSampleShape_Train,inputToDropout_Test, 1)
# ________________________________________________________
# This will go as input to the convolutions
# ________________________________________________________
return (output_Train, output_Test)