"""
Copyright (c) 2016, Jose Dolz .All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
NOTES: There are still some functionalities to be implemented.
- Add pooling layer in 3D
- Add more activation functions
- Add more optimizers (ex. Adam)
Jose Dolz. Dec, 2016.
email: jose.dolz.upv@gmail.com
LIVIA Department, ETS, Montreal.
"""
import numpy
import numpy as np
import theano
import theano.tensor as T
from theano.tensor.nnet import conv
import random
from math import floor
from math import ceil
from Modules.General.Utils import computeReceptiveField
from Modules.General.Utils import extendLearningRateToParams
from Modules.General.Utils import extractCenterFeatMaps
from Modules.General.Utils import getCentralVoxels
from Modules.General.Utils import getWeightsSet
import LiviaNet3DConvLayer
import LiviaSoftmax
import pdb
#####################################################
# ------------------------------------------------- #
## ## ## ## ## LIVIANET 3D ## ## ## ## ##
# ------------------------------------------------- #
#####################################################
class LiviaNet3D(object):
def __init__(self):
# --- containers for Theano compiled functions ----
self.networkModel_Train = ""
self.networkModel_Test = ""
# --- shared variables will be stored in the following variables ----
self.trainingData_x = ""
self.testingData_x = ""
self.trainingData_y = ""
self.lastLayer = ""
self.networkLayers = []
self.intermediate_ConnectedLayers = []
self.networkName = ""
self.folderName = ""
self.cnnLayers = []
self.n_classes = -1
self.sampleSize_Train = []
self.sampleSize_Test = []
self.kernel_Shapes = []
self.pooling_scales = []
self.dropout_Rates = []
self.activationType = -1
self.weight_Initialization = -1
self.dropoutRates = []
self.batch_Size = -1
self.receptiveField = 0
self.initialLearningRate = ""
self.learning_rate = theano.shared(np.cast["float32"](0.01))
# Symbolic variables,
self.inputNetwork_Train = None
self.inputNetwork_Test = None
self.L1_reg_C = 0
self.L2_reg_C = 0
self.costFunction = 0
# Params for optimizers
self.initialMomentum = ""
self.momentum = theano.shared(np.cast["float32"](0.))
self.momentumNormalized = 0
self.momentumType = 0
self.vel_Momentum = []
self.rho_RMSProp = 0
self.epsilon_RMSProp = 0
self.params_RmsProp = []
self.numberOfEpochsTrained = 0
self.applyBatchNorm = ""
self.numberEpochToApplyBatchNorm = 0
self.softmax_Temp = 1.0
self.centralVoxelsTrain = ""
self.centralVoxelsTest = ""
# -------------------------------------------------------------------- END Function ------------------------------------------------------------------- #
""" ####### Function to generate the network architecture ######### """
def generateNetworkLayers(self,
cnnLayers,
kernel_Shapes,
maxPooling_Layer,
sampleShape_Train,
sampleShape_Test,
inputSample_Train,
inputSample_Test,
layersToConnect):
rng = np.random.RandomState(24575)
# Define inputs for first layers (which will be re-used for next layers)
inputSampleToNextLayer_Train = inputSample_Train
inputSampleToNextLayer_Test = inputSample_Test
inputSampleToNextLayerShape_Train = sampleShape_Train
inputSampleToNextLayerShape_Test = sampleShape_Test
# Get the convolutional layers
numLayers = len(kernel_Shapes)
numberCNNLayers = []
numberFCLayers = []
for l_i in range(1,len(kernel_Shapes)):
if len(kernel_Shapes[l_i]) == 3:
numberCNNLayers = l_i + 1
numberFCLayers = numLayers - numberCNNLayers
######### -------------- Generate the convolutional layers -------------- #########
# Some checks
if self.weight_Initialization_CNN == 2:
if len(self.weightsTrainedIdx) <> numberCNNLayers:
print(" ... WARNING!!!! Number of indexes specified for trained layers does not correspond with number of conv layers in the created architecture...")
if self.weight_Initialization_CNN == 2:
weightsNames = getWeightsSet(self.weightsFolderName, self.weightsTrainedIdx)
for l_i in xrange(0, numberCNNLayers) :
# Get properties of this layer
# The second element is the number of feature maps of previous layer
currentLayerKernelShape = [cnnLayers[l_i], inputSampleToNextLayerShape_Train[1]] + kernel_Shapes[l_i]
# If weights are going to be initialized from other pre-trained network they should be loaded in this stage
# Otherwise
weights = []
if self.weight_Initialization_CNN == 2:
weights = np.load(weightsNames[l_i])
maxPoolingParameters = []
dropoutRate = 0.0
myLiviaNet3DConvLayer = LiviaNet3DConvLayer.LiviaNet3DConvLayer(rng,
l_i,
inputSampleToNextLayer_Train,
inputSampleToNextLayer_Test,
inputSampleToNextLayerShape_Train,
inputSampleToNextLayerShape_Test,
currentLayerKernelShape,
self.applyBatchNorm,
self.numberEpochToApplyBatchNorm,
maxPoolingParameters,
self.weight_Initialization_CNN,
weights,
self.activationType,
dropoutRate
)
self.networkLayers.append(myLiviaNet3DConvLayer)
# Just for printing
inputSampleToNextLayer_Train_Old = inputSampleToNextLayerShape_Train
inputSampleToNextLayer_Test_Old = inputSampleToNextLayerShape_Test
# Update inputs for next layer
inputSampleToNextLayer_Train = myLiviaNet3DConvLayer.outputTrain
inputSampleToNextLayer_Test = myLiviaNet3DConvLayer.outputTest
inputSampleToNextLayerShape_Train = myLiviaNet3DConvLayer.outputShapeTrain
inputSampleToNextLayerShape_Test = myLiviaNet3DConvLayer.outputShapeTest
print(" ----- (Training) Input shape: {} ---> Output shape: {} || kernel shape {}".format(inputSampleToNextLayer_Train_Old,inputSampleToNextLayerShape_Train, currentLayerKernelShape))
print(" ----- (Testing) Input shape: {} ---> Output shape: {}".format(inputSampleToNextLayer_Test_Old,inputSampleToNextLayerShape_Test))
######### -------------- Create the intermediate (i.e. multi-scale) connections from conv layers to FCN ----------------- ##################
featMapsInFullyCN = inputSampleToNextLayerShape_Train[1]
[featMapsInFullyCN,
inputToFullyCN_Train,
inputToFullyCN_Test] = self.connectIntermediateLayers(layersToConnect,
inputSampleToNextLayer_Train,
inputSampleToNextLayer_Test,
featMapsInFullyCN)
######### -------------- Generate the Fully Connected Layers ----------------- ##################
# Define inputs
inputFullyCNShape_Train = [self.batch_Size, featMapsInFullyCN] + inputSampleToNextLayerShape_Train[2:5]
inputFullyCNShape_Test = [self.batch_Size, featMapsInFullyCN] + inputSampleToNextLayerShape_Test[2:5]
# Kamnitsas applied padding and mirroring to the images when kernels in FC layers were larger than 1x1x1.
# For this current work, we employed kernels of this size (i.e. 1x1x1), so there is no need to apply padding or mirroring.
# TODO. Check
print(" --- Starting to create the fully connected layers....")
for l_i in xrange(numberCNNLayers, numLayers) :
numberOfKernels = cnnLayers[l_i]
kernel_shape = [kernel_Shapes[l_i][0],kernel_Shapes[l_i][0],kernel_Shapes[l_i][0]]
currentLayerKernelShape = [cnnLayers[l_i], inputFullyCNShape_Train[1]] + kernel_shape
# If weights are going to be initialized from other pre-trained network they should be loaded in this stage
# Otherwise
weights = []
applyBatchNorm = True
epochsToApplyBatchNorm = 60
maxPoolingParameters = []
dropoutRate = self.dropout_Rates[l_i-numberCNNLayers]
myLiviaNet3DFullyConnectedLayer = LiviaNet3DConvLayer.LiviaNet3DConvLayer(rng,
l_i,
inputToFullyCN_Train,
inputToFullyCN_Test,
inputFullyCNShape_Train,
inputFullyCNShape_Test,
currentLayerKernelShape,
self.applyBatchNorm,
self.numberEpochToApplyBatchNorm,
maxPoolingParameters,
self.weight_Initialization_FCN,
weights,
self.activationType,
dropoutRate
)
self.networkLayers.append(myLiviaNet3DFullyConnectedLayer)
# Just for printing
inputFullyCNShape_Train_Old = inputFullyCNShape_Train
inputFullyCNShape_Test_Old = inputFullyCNShape_Test
# Update inputs for next layer
inputToFullyCN_Train = myLiviaNet3DFullyConnectedLayer.outputTrain
inputToFullyCN_Test = myLiviaNet3DFullyConnectedLayer.outputTest
inputFullyCNShape_Train = myLiviaNet3DFullyConnectedLayer.outputShapeTrain
inputFullyCNShape_Test = myLiviaNet3DFullyConnectedLayer.outputShapeTest
# Print
print(" ----- (Training) Input shape: {} ---> Output shape: {} || kernel shape {}".format(inputFullyCNShape_Train_Old,inputFullyCNShape_Train, currentLayerKernelShape))
print(" ----- (Testing) Input shape: {} ---> Output shape: {}".format(inputFullyCNShape_Test_Old,inputFullyCNShape_Test))
######### -------------- Do Classification layer ----------------- ##################
# Define kernel shape for classification layer
featMaps_LastLayer = self.cnnLayers[-1]
filterShape_ClassificationLayer = [self.n_classes, featMaps_LastLayer, 1, 1, 1]
# Define inputs and shapes for the classification layer
inputImageClassificationLayer_Train = inputToFullyCN_Train
inputImageClassificationLayer_Test = inputToFullyCN_Test
inputImageClassificationLayerShape_Train = inputFullyCNShape_Train
inputImageClassificationLayerShape_Test = inputFullyCNShape_Test
print(" ----- (Classification layer) kernel shape {}".format(filterShape_ClassificationLayer))
classification_layer_Index = l_i
weights = []
applyBatchNorm = True
epochsToApplyBatchNorm = 60
maxPoolingParameters = []
dropoutRate = self.dropout_Rates[len(self.dropout_Rates)-1]
softmaxTemperature = 1.0
myLiviaNet_ClassificationLayer = LiviaSoftmax.LiviaSoftmax(rng,
classification_layer_Index,
inputImageClassificationLayer_Train,
inputImageClassificationLayer_Test,
inputImageClassificationLayerShape_Train,
inputImageClassificationLayerShape_Test,
filterShape_ClassificationLayer,
self.applyBatchNorm,
self.numberEpochToApplyBatchNorm,
maxPoolingParameters,
self.weight_Initialization_FCN,
weights,
0, #self.activationType,
dropoutRate,
softmaxTemperature
)
self.networkLayers.append(myLiviaNet_ClassificationLayer)
self.lastLayer = myLiviaNet_ClassificationLayer
print(" ----- (Training) Input shape: {} ---> Output shape: {} || kernel shape {}".format(inputImageClassificationLayerShape_Train,myLiviaNet_ClassificationLayer.outputShapeTrain, filterShape_ClassificationLayer))
print(" ----- (Testing) Input shape: {} ---> Output shape: {}".format(inputImageClassificationLayerShape_Test,myLiviaNet_ClassificationLayer.outputShapeTest))
# -------------------------------------------------------------------- END Function ------------------------------------------------------------------- #
def updateLayersMatricesBatchNorm(self):
for l_i in xrange(0, len(self.networkLayers) ) :
self.networkLayers[l_i].updateLayerMatricesBatchNorm()
# -------------------------------------------------------------------- END Function ------------------------------------------------------------------- #
""" Function that connects intermediate layers to the input of the first fully connected layer
This is done for multi-scale features """
def connectIntermediateLayers(self,
layersToConnect,
inputSampleInFullyCN_Train,
inputSampleInFullyCN_Test,
featMapsInFullyCN):
centralVoxelsTrain = self.centralVoxelsTrain
centralVoxelsTest = self.centralVoxelsTest
for l_i in layersToConnect :
currentLayer = self.networkLayers[l_i]
output_train = currentLayer.outputTrain
output_trainShape = currentLayer.outputShapeTrain
output_test = currentLayer.outputTest
output_testShape = currentLayer.outputShapeTest
# Get the middle part of feature maps at intermediate levels to make them of the same shape at the beginning of the
# first fully connected layer
featMapsCenter_Train = extractCenterFeatMaps(output_train, output_trainShape, centralVoxelsTrain)
featMapsCenter_Test = extractCenterFeatMaps(output_test, output_testShape, centralVoxelsTest)
featMapsInFullyCN = featMapsInFullyCN + currentLayer._numberOfFeatureMaps
inputSampleInFullyCN_Train = T.concatenate([inputSampleInFullyCN_Train, featMapsCenter_Train], axis=1)
inputSampleInFullyCN_Test = T.concatenate([inputSampleInFullyCN_Test, featMapsCenter_Test], axis=1)
return [featMapsInFullyCN, inputSampleInFullyCN_Train, inputSampleInFullyCN_Test]
############# Functions for OPTIMIZERS #################
def getUpdatesOfTrainableParameters(self, cost, paramsTraining, numberParamsPerLayer) :
# Optimizers
def SGD():
print (" --- Optimizer: Stochastic gradient descent (SGD)")
updates = self.updateParams_SGD(cost, paramsTraining, numberParamsPerLayer)
return updates
def RMSProp():
print (" --- Optimizer: RMS Prop")
updates = self.updateParams_RMSProp(cost, paramsTraining, numberParamsPerLayer)
return updates
# TODO. Include more optimizers here
optionsOptimizer = {0 : SGD,
1 : RMSProp}
updates = optionsOptimizer[self.optimizerType]()
return updates
""" # Optimizers:
# More optimizers in : https://github.com/Lasagne/Lasagne/blob/master/lasagne/updates.py """
# ========= Update the trainable parameters using Stocastic Gradient Descent ===============
def updateParams_SGD(self, cost, paramsTraining, numberParamsPerLayer) :
# Create a list of gradients for all model parameters
grads = T.grad(cost, paramsTraining)
# Get learning rates for each param
#learning_rates = extendLearningRateToParams(numberParamsPerLayer,self.learning_rate)
self.vel_Momentum = []
updates = []
constantForCurrentGradientUpdate = 1.0 - self.momentum*self.momentumNormalized
#for param, grad, lrate in zip(paramsTraining, grads, learning_rates) :
for param, grad in zip(paramsTraining, grads) :
v = theano.shared(param.get_value()*0., broadcastable=param.broadcastable)
self.vel_Momentum.append(v)
stepToGradientDirection = constantForCurrentGradientUpdate*self.learning_rate*grad
newVel = self.momentum * v - stepToGradientDirection
if self.momentumType == 0 :
updateToParam = newVel
else :
updateToParam = self.momentum*newVel - stepToGradientDirection
updates.append((v, newVel))
updates.append((param, param + updateToParam))
return updates
# ========= Update the trainable parameters using RMSProp ===============
def updateParams_RMSProp(self, cost, paramsTraining, numberParamsPerLayer) :
# Original code: https://gist.github.com/Newmu/acb738767acb4788bac3
# epsilon=1e-4 in paper.
# Kamnitsas reported NaN values in cost function when employing this value.
# Worked ok with epsilon=1e-6.
grads = T.grad(cost, paramsTraining)
# Get learning rates for each param
#learning_rates = extendLearningRateToParams(numberParamsPerLayer,self.learning_rate)
self.params_RmsProp = []
self.vel_Momentum = []
updates = []
constantForCurrentGradientUpdate = 1.0 - self.momentum*self.momentumNormalized
# Using theano constant to prevent upcasting of float32
one = T.constant(1)
for param, grad in zip(paramsTraining, grads):
accu = theano.shared(param.get_value()*0., broadcastable=param.broadcastable)
self.params_RmsProp.append(accu)
v = theano.shared(param.get_value()*0., broadcastable=param.broadcastable)
self.vel_Momentum.append(v)
accu_new = self.rho_RMSProp * accu + (one - self.rho_RMSProp) * T.sqr(grad)
numGradStep = self.learning_rate * grad
denGradStep = T.sqrt(accu_new + self.epsilon_RMSProp)
stepToGradientDirection = constantForCurrentGradientUpdate*(numGradStep /denGradStep)
newVel = self.momentum * v - stepToGradientDirection
if self.momentumType == 0 :
updateToParam = newVel
else :
updateToParam = self.momentum*newVel - stepToGradientDirection
updates.append((accu, accu_new))
updates.append((v, newVel))
updates.append((param, param + updateToParam))
return updates
# -------------------------------------------------------------------- END Function ------------------------------------------------------------------- #
""" ------ Get trainable parameters --------- """
def getTrainable_Params(_self):
trainable_Params = []
numberTrain_ParamsLayer = []
for l_i in xrange(0, len(_self.networkLayers) ) :
trainable_Params = trainable_Params + _self.networkLayers[l_i].params
numberTrain_ParamsLayer.append(_self.networkLayers[l_i].numberOfTrainableParams) # TODO: Get this directly as len(_self.networkLayers[l_i].params)
return trainable_Params,numberTrain_ParamsLayer
# -------------------------------------------------------------------- END Function ------------------------------------------------------------------- #
def initTrainingParameters(self,
costFunction,
L1_reg_C,
L2_reg_C,
learning_rate,
momentumType,
momentumValue,
momentumNormalized,
optimizerType,
rho_RMSProp,
epsilon_RMSProp
) :
print(" ------- Initializing network training parameters...........")
self.numberOfEpochsTrained = 0
self.L1_reg_C = L1_reg_C
self.L2_reg_C = L2_reg_C
# Set Learning rate and store the last epoch where it was modified
self.initialLearningRate = learning_rate
# TODO: Check the shared variables from learning rates
self.learning_rate.set_value(self.initialLearningRate[0])
# Set momentum type and values
self.momentumType = momentumType
self.initialMomentumValue = momentumValue
self.momentumNormalized = momentumNormalized
self.momentum.set_value(self.initialMomentumValue)
# Optimizers
if (optimizerType == 2):
optimizerType = 1
def SGD():
print (" --- Optimizer: Stochastic gradient descent (SGD)")
self.optimizerType = optimizerType
def RMSProp():
print (" --- Optimizer: RMS Prop")
self.optimizerType = optimizerType
self.rho_RMSProp = rho_RMSProp
self.epsilon_RMSProp = epsilon_RMSProp
# TODO. Include more optimizers here
optionsOptimizer = {0 : SGD,
1 : RMSProp}
optionsOptimizer[optimizerType]()
# -------------------------------------------------------------------- END Function ------------------------------------------------------------------- #
def updateParams_BatchNorm(self) :
updatesForBnRollingAverage = []
for l_i in xrange(0, len(self.networkLayers) ) :
currentLayer = self.networkLayers[l_i]
updatesForBnRollingAverage.extend( currentLayer.getUpdatesForBnRollingAverage() )
return updatesForBnRollingAverage
# ------------------------------------------------------------------------------------ #
# --------------------------- Compile the Theano functions ------------------- #
# ------------------------------------------------------------------------------------ #
def compileTheanoFunctions(self):
print(" ----------------- Starting compilation process ----------------- ")
# ------- Create and initialize sharedVariables needed to compile the training function ------ #
# -------------------------------------------------------------------------------------------- #
# For training
self.trainingData_x = theano.shared(np.zeros([1,1,1,1,1], dtype="float32"), borrow = True)
self.trainingData_y = theano.shared(np.zeros([1,1,1,1], dtype="float32") , borrow = True)
# For testing
self.testingData_x = theano.shared(np.zeros([1,1,1,1,1], dtype="float32"), borrow = True)
x_Train = self.inputNetwork_Train
x_Test = self.inputNetwork_Test
y_Train = T.itensor4('y')
# Allocate symbolic variables for the data
index_Train = T.lscalar()
index_Test = T.lscalar()
# ------- Needed to compile the training function ------ #
# ------------------------------------------------------ #
trainingData_y_CastedToInt = T.cast( self.trainingData_y, 'int32')
# To accomodate the weights in the cost function to account for class imbalance
weightsOfClassesInCostFunction = T.fvector()
weightPerClass = T.fvector()
# --------- Get trainable parameters (to be fit by gradient descent) ------- #
# -------------------------------------------------------------------------- #
[paramsTraining, numberParamsPerLayer] = self.getTrainable_Params()
# ------------------ Define the cost function --------------------- #
# ----------------------------------------------------------------- #
def negLogLikelihood():
print (" --- Cost function: negativeLogLikelihood")
costInLastLayer = self.lastLayer.negativeLogLikelihoodWeighted(y_Train,weightPerClass)
return costInLastLayer
def NotDefined():
print (" --- Cost function: Not defined!!!!!! WARNING!!!")
optionsCostFunction = {0 : negLogLikelihood,
1 : NotDefined}
costInLastLayer = optionsCostFunction[self.costFunction]()
# --------------------------- Get costs --------------------------- #
# ----------------------------------------------------------------- #
# Get L1 and L2 weights regularization
costL1 = 0
costL2 = 0
# Compute the costs
for l_i in xrange(0, len(self.networkLayers)) :
costL1 += abs(self.networkLayers[l_i].W).sum()
costL2 += (self.networkLayers[l_i].W ** 2).sum()
# Add also the cost of the last layer
cost = (costInLastLayer
+ self.L1_reg_C * costL1
+ self.L2_reg_C * costL2)
# --------------------- Include all trainable parameters in updates (for optimization) ---------------------- #
# ----------------------------------------------------------------------------------------------------------- #
updates = self.getUpdatesOfTrainableParameters(cost, paramsTraining, numberParamsPerLayer)
# --------------------- Include batch normalization params ---------------------- #
# ------------------------------------------------------------------------------- #
updates = updates + self.updateParams_BatchNorm()
# For the testing function we need to get the Feature maps activations
featMapsActivations = []
lower_act = 0
upper_act = 9999
# TODO: Change to output_Test
for l_i in xrange(0,len(self.networkLayers)):
featMapsActivations.append(self.networkLayers[l_i].outputTest[:, lower_act : upper_act, :, :, :])
# For the last layer get the predicted probabilities (p_y_given_x_test)
featMapsActivations.append(self.lastLayer.p_y_given_x_test)
# --------------------- Preparing data to compile the functions ---------------------- #
# ------------------------------------------------------------------------------------ #
givensDataSet_Train = { x_Train: self.trainingData_x[index_Train * self.batch_Size: (index_Train + 1) * self.batch_Size],
y_Train: trainingData_y_CastedToInt[index_Train * self.batch_Size: (index_Train + 1) * self.batch_Size],
weightPerClass: weightsOfClassesInCostFunction }
givensDataSet_Test = { x_Test: self.testingData_x[index_Test * self.batch_Size: (index_Test + 1) * self.batch_Size] }
print(" ...Compiling the training function...")
self.networkModel_Train = theano.function(
[index_Train, weightsOfClassesInCostFunction],
#[cost] + self.lastLayer.doEvaluation(y_Train),
[cost],
updates=updates,
givens = givensDataSet_Train
)
print(" ...The training function was compiled...")
#self.getProbabilities = theano.function(
#[index],
#self.lastLayer.p_y_given_x_Train,
#givens={
#x: self.trainingData_x[index * _self.batch_size: (index + 1) * _self.batch_size]
#}
#)
print(" ...Compiling the testing function...")
self.networkModel_Test = theano.function(
[index_Test],
featMapsActivations,
givens = givensDataSet_Test
)
print(" ...The testing function was compiled...")
# -------------------------------------------------------------------- END Function ------------------------------------------------------------------- #
####### Function to generate the CNN #########
def createNetwork(self,
networkName,
folderName,
cnnLayers,
kernel_Shapes,
intermediate_ConnectedLayers,
n_classes,
sampleSize_Train,
sampleSize_Test,
batch_Size,
applyBatchNorm,
numberEpochToApplyBatchNorm,
activationType,
dropout_Rates,
pooling_Params,
weights_Initialization_CNN,
weights_Initialization_FCN,
weightsFolderName,
weightsTrainedIdx,
softmax_Temp
):
# ============= Model Parameters Passed as arguments ================
# Assign parameters:
self.networkName = networkName
self.folderName = folderName
self.cnnLayers = cnnLayers
self.n_classes = n_classes
self.kernel_Shapes = kernel_Shapes
self.intermediate_ConnectedLayers = intermediate_ConnectedLayers
self.pooling_scales = pooling_Params
self.dropout_Rates = dropout_Rates
self.activationType = activationType
self.weight_Initialization_CNN = weights_Initialization_CNN
self.weight_Initialization_FCN = weights_Initialization_FCN
self.weightsFolderName = weightsFolderName
self.weightsTrainedIdx = weightsTrainedIdx
self.batch_Size = batch_Size
self.sampleSize_Train = sampleSize_Train
self.sampleSize_Test = sampleSize_Test
self.applyBatchNorm = applyBatchNorm
self.numberEpochToApplyBatchNorm = numberEpochToApplyBatchNorm
self.softmax_Temp = softmax_Temp
# Compute the CNN receptive field
stride = 1;
self.receptiveField = computeReceptiveField(self.kernel_Shapes, stride)
# --- Size of Image samples ---
self.sampleSize_Train = sampleSize_Train
self.sampleSize_Test = sampleSize_Test
## --- Batch Size ---
self.batch_Size = batch_Size
# ======== Calculated Attributes =========
self.centralVoxelsTrain = getCentralVoxels(self.sampleSize_Train, self.receptiveField)
self.centralVoxelsTest = getCentralVoxels(self.sampleSize_Test, self.receptiveField)
#==============================
rng = numpy.random.RandomState(23455)
# Transfer to LIVIA NET
self.sampleSize_Train = sampleSize_Train
self.sampleSize_Test = sampleSize_Test
# --------- Now we build the model -------- #
print("...[STATUS]: Building the Network model...")
# Define the symbolic variables used as input of the CNN
# start-snippet-1
# Define tensor5
tensor5 = T.TensorType(dtype='float32', broadcastable=(False, False, False, False, False))
self.inputNetwork_Train = tensor5()
self.inputNetwork_Test = tensor5()
# Define input shapes to the netwrok
inputSampleShape_Train = (self.batch_Size, 1, self.sampleSize_Train[0], self.sampleSize_Train[1], self.sampleSize_Train[2])
inputSampleShape_Test = (self.batch_Size, 1, self.sampleSize_Test[0], self.sampleSize_Test[1], self.sampleSize_Test[2])
print (" - Shape of input subvolume (Training): {}".format(inputSampleShape_Train))
print (" - Shape of input subvolume (Testing): {}".format(inputSampleShape_Test))
inputSample_Train = self.inputNetwork_Train
inputSample_Test = self.inputNetwork_Test
# TODO change cnnLayers name by networkLayers
self.generateNetworkLayers(cnnLayers,
kernel_Shapes,
self.pooling_scales,
inputSampleShape_Train,
inputSampleShape_Test,
inputSample_Train,
inputSample_Test,
intermediate_ConnectedLayers)
# Release Data from GPU
def releaseGPUData(self) :
# GPU NOTE: Remove the input values to avoid copying data to the GPU
# Image Data
self.trainingData_x.set_value(np.zeros([1,1,1,1,1], dtype="float32"))
self.testingData_x.set_value(np.zeros([1,1,1,1,1], dtype="float32"))
# Labels
self.trainingData_y.set_value(np.zeros([1,1,1,1], dtype="float32"))