[4f83d6]: / SFT / eval / qa_inference.py

Download this file

172 lines (133 with data), 5.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
'''
CUDA_VISIBLE_DEVICES=4,5,6,7 python medqa_inference.py \
--model-name-or-path path/to/pmc_llama_model \
--data-path /path/to/test.jsonl \
--write-dir /path/to/inferenced_result_dir
'''
import torch
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
import transformers
from typing import Dict, Optional, Sequence
import argparse
import jsonlines
from tqdm import tqdm
from functools import partial
import os
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model-name-or-path', type=str)
parser.add_argument('--data-path', type=str)
parser.add_argument('--write-dir', type=str)
args = parser.parse_args()
return args
def construct_spedical_tokens_dict() -> dict:
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
special_tokens_dict = dict()
if tokenizer.pad_token is None or tokenizer.pad_token == '':
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None or tokenizer.eos_token == '':
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None or tokenizer.bos_token == '':
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None or tokenizer.unk_token == '':
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
return special_tokens_dict
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
# enddef
def inference_on_one(input_str: Sequence[str], model, tokenizer) -> str:
model_inputs = tokenizer(
input_str,
return_tensors='pt',
padding=True,
)
topk_output = model.generate(
model_inputs.input_ids.cuda(),
max_new_tokens=1000,
top_k=50
)
# topk_output = model.generate(
# **model_inputs,
# max_new_tokens=1000,
# top_k=50
# )
output_str = tokenizer.batch_decode(topk_output) # a list containing just one str
return output_str[0]
def read_jsonl(file_path):
data_list = []
with jsonlines.open(file_path) as reader:
for obj in reader:
data_list.append(obj)
return data_list
def prepare_data(data_list: Sequence[dict], model, tokenizer) -> Sequence[dict]:
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
for _idx in tqdm(range(len(data_list))):
data_entry = data_list[_idx]
sample_id = data_entry['sample_id']
data_list[_idx]['pmc_input'] = prompt_input.format_map(data_entry) if data_entry.get("input", "") != "" else prompt_no_input.format_map(data_entry)
# endfor
return data_list
# enddef
if __name__ == '__main__':
print('h')
args = parse_args()
print(f"\033[32mPrepare Data\033[0m")
data_list = read_jsonl(args.data_path)
fn = partial(prepare_data, model=None, tokenizer=None)
inference_data = fn(data_list)
print(f"\033[32mLoad Checkpoint\033[0m")
model = transformers.LlamaForCausalLM.from_pretrained(args.model_name_or_path)
tokenizer = transformers.LlamaTokenizer.from_pretrained(
args.model_name_or_path,
#cache_dir=training_args.cache_dir,
model_max_length=400,
padding_side="right",
use_fast=False,
)
special_tokens_dict = construct_spedical_tokens_dict()
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
model.cuda()
for _idx in tqdm(range(len(data_list))):
data_entry = data_list[_idx]
sample_id = data_entry['sample_id']
input_str = [
data_entry['pmc_input']
]
output_str = inference_on_one(input_str, model, tokenizer)
with open(os.path.join(args.write_dir, f"{sample_id}.txt"), 'w') as f:
f.write(output_str)
# endfor