[5b4ecd]: / evaluation / benchmarks.py

Download this file

664 lines (581 with data), 26.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
"""
This script implement a factory pattern to implement any benchmark for evaluation.
"""
import os
import json
import random
import pandas as pd
from tqdm import tqdm
from datasets import load_dataset, Dataset, load_from_disk
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
COT_PROMPTS = {
'mmlu_general': "medmcqa",
'mmlu_medical': "medmcqa",
'medqa': "medqa",
'medmcqa': "medmcqa",
'pubmedqa': "pubmedqa",
}
def benchmark_factory(name):
"""
Creates a benchmark object.
:param name: str, with the benchmark name.
return:
"""
# Note: benchmark is instantiated *after* selection.
factories = {
"medmcqa": MedMCQA,
"pubmedqa": ClosedPubMedQA,
"open_pubmedqa": PubMedQA,
"medqa": MedQA,
"medqa4": MedQA4,
"blurb": Blurb,
"medicationqa": MedicationQA,
"mmlu_medical": MMLU,
"mmlu_general": MMLU,
"truthfulqa": TruthfulQA,
"gsm8k": GSM8K
}
if name not in factories:
raise ValueError("Benchmark {} not found. \
Select one of the following: {}".format(name, list(factories.keys())))
return factories[name](name)
def load_instruction(prompt_name):
"""
Loads the instruction for the given benchmark.
:param benchmark: str, the name of the benchmark
:param prompt_name: str, the name of the prompt to be used
"""
path = os.path.join(ROOT_DIR, 'evaluation', 'instructions.json')
if not os.path.exists(path):
raise FileNotFoundError('Please save the different prompts to instructions.json')
with open(path) as f:
prompts = json.load(f)
return prompts[prompt_name]
class Benchmark:
def __init__(self, name):
"""
Class to implement a benchmark for evaluation.
:param name: str, with the benchmark name.
:param path: str (optional), the path to the benchmark data.
:param splits: list of str, the splits of the data: train / test
:param hub_name: str, the name of the HuggingFace hub dataset.
:param dir_name: str, the name of the directory where the data is stored.
:param train_data: HuggingFace Dataset, the train data.
:param test_data: HuggingFace Dataset, the test data.
:param generations: HuggingFace Dataset, the generations.
:param subsets: list of str (optional), the subsets of the data to download from the HuggingFace hub.
:param has_instruction: bool, whether the dataset already contains instructions.
:param local_path: str (optional), the path to a directory holding train and test json local data files.
"""
self.name = name
self.path = None
self.splits = None
self.hub_name = None
self.dir_name = None
self.train_data = None
self.test_data = None
self.generations = None
self.subsets = None
self.has_instructions = False
self.local_path = None
def load_from_local(self):
"""
Downloads the benchmark data from local files (for 1st time loading).
"""
print(f'Downloading {self.name} benchmark from local directory {self.local_path}.')
if not os.path.exists(self.local_path):
raise ValueError(f"Local path {self.local_path} does not exist. \
Please provide a valid local_path argument to load_data(). \
This directory should contain train and test json files.")
paths = [os.path.join(self.local_path, file) for file in os.listdir(self.local_path)]
train_paths = [path for path in paths if 'train' in path]
test_paths = [path for path in paths if 'test' in path or 'val' in path]
if len(train_paths) == 0:
raise ValueError("Could not find a train file in the local directory. \
Please add a file with 'train' in its name.")
if len(test_paths) == 0:
raise ValueError("Could not find a test file in the local directory. \
Please add a file with 'test' or 'val' in its name.")
if len(train_paths) > 1:
print("Multiple train files found. Using the first one: {}".format(train_paths[0]))
if len(test_paths) > 1:
print("Multiple test files found. Using the first one: {}".format(test_paths[0]))
data_files={'train': train_paths[0], 'test': test_paths[0]}
dataset = load_dataset('json', data_files=data_files, download_mode='force_redownload')
dataset.save_to_disk(self.path)
def load_from_hub(self):
"""
Downloads the benchmark data from the HuggingFace hub (for 1st time loading)
This is specific to each benchmark and must be implemented in the extended class.
"""
print(f'Downloading benchmark from HuggingFace hub ({self.hub_name}).')
try:
if self.subsets is None:
load_dataset(self.hub_name,
cache_dir=os.path.join(ROOT_DIR, 'benchmarks', 'datasets'),
download_mode='force_redownload')
else:
for subset in self.subsets:
load_dataset(self.hub_name,
subset,
cache_dir=os.path.join(ROOT_DIR, 'benchmarks', 'datasets'),
download_mode='force_redownload')
except:
raise ValueError("Default Huggingface loader failed for benchmark {}. \
Try implementing a custom load_from_hub function.".format(self.name))
def load_data(self, partition='train', local_path=None):
"""
Loads benchmark data from a local directory, or from the HuggingFace hub if not yet downloaded.
Based on the input partition type, instantiates the respective class attribute.
:param path: str (optional), the path to the benchmark data.
:param partition: str, the split of the data: train / test
:param local_path: str (optional), the path to a directory holding train and test json local data files.
"""
print('='*50 +f'\nLoading data for benchmark {self.name}.\n')
if partition not in self.splits:
raise ValueError("Please provide a valid partition split: {}".format(self.splits))
if local_path:
self.local_path = local_path
if not os.path.exists(self.path):
os.makedirs(self.path)
if self.local_path:
self.load_from_local()
else:
self.load_from_hub()
try:
if self.local_path:
dataset = load_from_disk(self.path)
if partition == 'train':
self.train_data = dataset['train']
elif partition in ['test', 'validation']:
self.test_data = dataset[partition]
else:
if self.subsets is None:
if partition == 'train':
self.train_data = load_dataset(self.path, split=partition)
elif partition in ['test', 'validation']:
self.test_data = load_dataset(self.path, split=partition)
else:
if partition == 'train':
self.train_data = aggregate_datasets(self.path, self.subsets, partition=partition)
elif partition in ['test', 'validation']:
self.test_data = aggregate_datasets(self.path, self.subsets, partition=partition)
except ValueError as e:
print(e)
raise ValueError("Couldn't load benchmark {} from local path.".format(self.name))
def save_data(self, partition='train'):
"""
Saves any preprocessing data partition.
:param data: pd.DataFrame
:param file_name: str
"""
path = os.path.join('benchmarks', 'preprocessing', f"{self.name}_{partition}")
print("Saving {} data to the following path: {}".format(self.name, path))
if partition == 'train':
pd.to_pickle(self.train_data, path)
elif partition == 'test':
pd.to_pickle(self.test_data, path)
def preprocessing(self, partition='train'):
"""
Applies a custom pre-processing over the partition.
If instruction is provided, preprends it to the question
Updates the train or test self attributes.
:param _preprocess: function: dict -> dict, the preprocessing function to apply.
:param partition: str, the split of the data: train / test
"""
try:
if partition == 'train':
self.train_data = self.train_data.map(self.custom_preprocessing)
elif partition in ['test', 'validation']:
self.test_data = self.test_data.map(self.custom_preprocessing)
else:
raise ValueError("Please provide a valid partition split: train or test")
except Exception as e:
print(e)
raise ValueError("Error when pre-processing {} {} data.".format(self.name, partition))
def custom_preprocessing(self):
"""
Wraps a pre-processing function (dict -> dict) specific to the benchmark.
Needs to be overriden in the extended class.
The return dictionary must contains keys 'prompt' & 'answer' for inference to work.
"""
raise NotImplementedError('Implement custom_preprocessing() in a child class.')
def add_instruction(self, instruction=None, cot_column=None, partition='train'):
"""
Adds instructions to the data based on the input partition.
:param instruction: dict, with the `system` and `user` instructions. If None, then it creates prompt with few shot
:param cot_column: str, the column that has the CoT explanation behind the gold answer.
:param partition: str, the split of the data: train / test
"""
def _add_instruction(row):
row['prompt'] = '{}\n{}\n{}\n'.format(
instruction['system'],
row['prompt'],
instruction['user'])
if cot_column:
row['gold'] = '{}.\nThe answer is: {} ###'.format(row[cot_column], row['gold'])
return row
if partition == 'train':
self.train_data = self.train_data.map(_add_instruction)
elif partition == 'test' or partition == 'validation':
self.test_data = self.test_data.map( _add_instruction)
else:
raise ValueError("Please provide a valid partition split: {}".format(self.splits))
def add_few_shot(self, shots=8, seed=42, load_cot=False):
def _get_question(prompt):
if 'Question:' in prompt:
return prompt.split('Question:')[1]
else:
return prompt
if load_cot:
assert self.name in COT_PROMPTS, "No CoT prompts found for {}.".format(self.name)
cot_path = os.path.join(ROOT_DIR, 'evaluation', 'prompt_cot', f"{COT_PROMPTS[self.name]}.jsonl")
samples = pd.read_json(cot_path, lines=True).to_dict(orient='records')
demonstrations = random.sample(samples, shots)
few_shot_prompt = '\n\n'.join([
f"Question: {_get_question(demo['prompt'])}\n{demo['gold']}"
for demo in demonstrations])
else:
assert self.train_data is not None, "Please load the train data first."
demonstrations = self.train_data.shuffle(seed=seed).select(range(shots))
few_shot_prompt = '\n\n'.join([
'{}\nThe answer is: {}'.format(
demo['prompt'],
demo['gold']) for demo in demonstrations])
def _add_few_shot(row):
row['prompt'] = '{}\n\n{}'.format(few_shot_prompt, row['prompt'])
return row
self.test_data = self.test_data.map( _add_few_shot)
def add_generations(self, data):
"""
Adds the generations to the respective class attribute as a HuggingFace Dataset.
:param data: pd.DataFrame or HuggingFace Dataset
"""
if isinstance(data, pd.DataFrame):
self.generations = Dataset.from_pandas(data)
elif isinstance(data, Dataset):
self.generations = data
def save_generations(self, checkpoint_name, shots=0):
"""
Saves the generations in the respective directory.
"""
path = os.path.join(ROOT_DIR, 'benchmarks', 'generations')
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
if shots == 0:
gen_path = os.path.join(path, f"{self.name}-{checkpoint_name}.jsonl")
else:
gen_path = os.path.join(path, f"{self.name}-{checkpoint_name}-{str(shots)}-shot.jsonl")
self.generations.to_json(gen_path, orient="records")
print("Stored {} generations to the following path: {}".format(self.name, gen_path))
def load_generations(self, checkpoint_name):
"""
Loads the generations from the respective directory.
"""
path = os.path.join(ROOT_DIR, 'benchmarks', 'generations', f"{self.name}_{checkpoint_name}.json")
if not os.path.exists(path):
raise ValueError("No generations found for {} at path: {}. \
Please run inference first.".format(self.name, path))
print("Loading {} generations from the following path: {}".format(self.name, path))
self.generations = pd.read_json(path)
class MedMCQA(Benchmark):
'''
MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset
designed to address real-world medical entrance exam questions.
Huggingface card: https://huggingface.co/datasets/medmcqa
'''
def __init__(self, name='medmcqa') -> None:
super().__init__(name)
self.hub_name = 'medmcqa'
self.dir_name = 'medmcqa'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train', 'validation', 'test']
self.num_options = 4
@staticmethod
def custom_preprocessing(row):
options = [row['opa'], row['opb'], row['opc'], row['opd']]
answer = int(row['cop'])
row['prompt'] = format_mcq(row['question'], options)
row['gold'] = chr(ord('A')+answer) if answer in [0, 1, 2, 3] else None
return row
class PubMedQA(Benchmark):
'''
PubMedQA is a novel biomedical question answering (QA) dataset.
Its task is to answer research biomedical questions with yes/no/maybe using PubMed abstracts.
Huggingface card: https://huggingface.co/datasets/bigbio/pubmed_qa
'''
def __init__(self, name='pubmedqa') -> None:
super().__init__(name)
self.hub_name = "bigbio/pubmed_qa"
self.dir_name = 'bigbio___pubmed_qa'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train', 'validation', 'test']
self.subsets = ['pubmed_qa_labeled_fold0_source']
self.num_options = 3
@staticmethod
def custom_preprocessing(row):
row["prompt"] = row['QUESTION'] # f"{row['CONTEXTS'][0]}\n{row['QUESTION']}"
row["gold"] = row['final_decision']
row["long_answer"] = row["LONG_ANSWER"]
return row
class ClosedPubMedQA(Benchmark):
'''
PubMedQA is a novel biomedical question answering (QA) dataset.
Its task is to answer research biomedical questions with yes/no/maybe using PubMed abstracts.
Huggingface card: https://huggingface.co/datasets/bigbio/pubmed_qa
'''
def __init__(self, name='pubmedqa') -> None:
super().__init__(name)
self.hub_name = "bigbio/pubmed_qa"
self.dir_name = 'bigbio___pubmed_qa'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train', 'validation', 'test']
self.subsets = ['pubmed_qa_labeled_fold0_source']
self.num_options = 3
@staticmethod
def custom_preprocessing(row):
context = '\n'.join(row['CONTEXTS'])
row["prompt"] = f"{context}\n{row['QUESTION']}"
row["gold"] = row['final_decision']
row["long_answer"] = row["LONG_ANSWER"]
return row
class PubMedQAValidation(Benchmark):
'''
PubMedQA is a novel biomedical question answering (QA) dataset.
Its task is to answer research biomedical questions with yes/no/maybe using PubMed abstracts.
Huggingface card: https://huggingface.co/datasets/bigbio/pubmed_qa
'''
def __init__(self, name='pubmedqa') -> None:
super().__init__(name)
self.hub_name = "bigbio/pubmed_qa"
self.dir_name = 'bigbio___pubmed_qa'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['validation']
# self.subsets = ['pubmed_qa_labeled_fold1_bigbio_qa'] + ['pubmed_qa_artificial_source']
self.num_options = 3
self.local_path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', 'pubmedqa_pubmedqa_validation.jsonl')
@staticmethod
def custom_preprocessing(row):
row["prompt"] = row['QUESTION']
row["gold"] = row['final_decision']
return row
class MedQA(Benchmark):
'''
MedQA is a dataset for solving medical problems collected from the professional medical board exams.
Huggingface card: https://huggingface.co/datasets/bigbio/med_qa
'''
def __init__(self, name='medqa') -> None:
super().__init__(name)
self.hub_name = 'bigbio/med_qa'
self.dir_name = 'bigbio___med_qa'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train', 'validation', 'test']
self.num_options = 5
self.subsets = ['med_qa_en_source']
@staticmethod
def custom_preprocessing(row):
choices = [opt['value'] for opt in row['options']]
row["prompt"] = format_mcq(row['question'], choices)
for opt in row['options']:
if opt['value'] == row['answer']:
row['gold'] = opt['key']
break
return row
class MedQA4(Benchmark):
'''
MedQA is a dataset for solving medical problems collected from the professional medical board exams.
Huggingface card: https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options
'''
def __init__(self, name='medqa4') -> None:
super().__init__(name)
self.hub_name = 'GBaker/MedQA-USMLE-4-options'
self.dir_name = 'GBaker___med_qa-usmle-4-options'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train', 'test']
self.num_options = 4
@staticmethod
def custom_preprocessing(row):
choices = [row['options'][opt] for opt in row['options']]
row["prompt"] = format_mcq(row['question'], choices)
for opt in row['options']:
if row['options'][opt] == row['answer']:
row['gold'] = opt
break
return row
class MedicationQA(Benchmark):
'''
MedicationQA is a benchmark to measure whether a language model is truthful in generating answers to questions
Huggingface card: https://huggingface.co/datasets/truthful_qa
'''
def __init__(self, name='medicationqa') -> None:
super().__init__(name)
self.hub_name = 'truehealth/medicationqa'
self.dir_name = 'truehealth___parquet'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train']
@staticmethod
def custom_preprocessing(row):
"""
Wraps a pre-processing function (dict -> dict) specific to the benchmark.
Probably will need to be overriden in the extended class.
"""
row["prompt"] = row['Question'],
row["gold"] = row['Answer']
return row
class TruthfulQA(Benchmark):
'''
TruthfulQA is a dataset of consumer health questions about medications.
Huggingface card: https://huggingface.co/datasets/truehealth/medicationqa
'''
def __init__(self, name='truthfulqa') -> None:
super().__init__(name)
self.hub_name = 'truthful_qa'
self.dir_name = 'truthful_qa'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['validation']
self.subsets = ['multiple_choice']
self.num_options = 4
@staticmethod
def custom_preprocessing(row):
options = row['mc1_targets']['choices']
labels = row['mc1_targets']['labels']
gold_option = options[labels.index(1)]
options.remove(gold_option)
wrong_options = random.choices(options, k=3)
choices = [gold_option] + wrong_options
random.shuffle(choices)
gold_id = choices.index(gold_option)
row["prompt"] = format_mcq(row['question'], choices)
row["gold"] = ['A', 'B', 'C', 'D'][gold_id]
return row
class MMLU(Benchmark):
'''
Measuring Massive Multitask Language Understanding
Huggingface card: https://huggingface.co/datasets/lukaemon/mmlu
'''
def __init__(self, name) -> None:
super().__init__(name)
self.hub_name = 'lukaemon/mmlu'
self.dir_name = 'lukaemon___mmlu'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train', 'validation', 'test']
self.subsets_general = ['college_computer_science', 'college_mathematics', 'elementary_mathematics',
'high_school_computer_science', 'high_school_mathematics',
'high_school_statistics','machine_learning', 'global_facts']
self.subsets_medical = [
'anatomy',
'college_biology',
'college_medicine',
'professional_medicine',
'medical_genetics',
'virology',
'clinical_knowledge',
'high_school_biology',
'high_school_chemistry',
'nutrition',
'college_chemistry'
]
self.subsets = self.subsets_medical
if name == 'mmlu_general':
self.subsets = self.subsets_general
self.num_options = 4
@staticmethod
def custom_preprocessing(row):
options = [row['A'], row['B'], row['C'], row['D']]
row["prompt"] = format_mcq(row['input'], options)
row["gold"] = row['target']
row["subset"] = row["subset"]
return row
class GSM8K(Benchmark):
'''
GSM8K (Grade School Math 8K) is a dataset of 8.5K grade school math word problems.
Huggingface card: https://huggingface.co/datasets/gsm8k
'''
def __init__(self, name='gsm8k') -> None:
super().__init__(name)
self.hub_name = 'gsm8k'
self.dir_name = 'gsm8k'
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ['train', 'test']
self.subsets = ['main']
@staticmethod
def custom_preprocessing(row):
row["prompt"] = row['question']
row["gold"] = row['answer'].split('####')[1].strip()
row["steps"] = row['answer'].split('####')[0].strip()
return row
class Blurb(Benchmark):
'''
BLURB is a collection of resources for biomedical natural language processing.
Huggingface card: https://huggingface.co/datasets/bigbio/blurb
'''
def __init__(self, name="blurb") -> None:
super().__init__(name)
self.hub_name = "bigbio/blurb"
self.dir_name = "bigbio___blurb"
self.path = os.path.join(ROOT_DIR, 'benchmarks', 'datasets', self.dir_name)
self.splits = ["train", "validation", "test"]
self.subsets = ["bc2gm", "bc5chem", "bc5disease", "jnlpba", "ncbi_disease"]
@staticmethod
def custom_preprocessing(row):
tokens = row["tokens"]
tags = row["ner_tags"]
entity_type = row["type"]
instruction = f"Given the following sentence, tell me which part of this sentence is a {entity_type} expression. There may be multiple expressions in this sentence."
prompt = f"{instruction}\n\n Sentence: {' '.join(tokens)}"
row["prompt"] = prompt
row["gold"] = "#".join(Blurb.get_entities(tokens, tags))
return row
@staticmethod
def get_entities(tokens, tags):
entities = []
entity = []
for token, tag in zip(tokens, tags):
if tag == 1:
if entity:
entities.append(' '.join(entity))
entity = [token]
elif tag == 2:
entity.append(token)
elif tag == 0 and entity:
entities.append(' '.join(entity))
entity = []
if entity:
entities.append(' '.join(entity))
return entities
def format_mcq(question, options):
"""
Formats a multiple choice question with the given options.
Uses the format recommended by: https://huggingface.co/blog/evaluating-mmlu-leaderboard
'Question: What is the capital of France?
Options:
A. London
B. Paris
C. Berlin
D. Rome'
:param question: str, the question
:param options: list of str, the options
:return: str, the formatted question
"""
if not question.endswith('?') and not question.endswith('.'):
question += '?'
options_str = '\n'.join([f"{chr(65+i)}. {options[i]}" for i in range(len(options))])
prompt = 'Question: ' + question + '\n\nOptions:\n' + options_str
return prompt
def aggregate_datasets(path, subsets, partition='train'):
"""
Takes as input a Huggingface DatasetDict with subset name as key, and Dataset as value.
Returns a pd.DataFrame with all subsets concatenated.
:param subsets: list of str, the subsets of the data to download from the HuggingFace hub.
:return: pd.DataFrame
"""
dataframes = []
for subset in subsets:
subset_data = load_dataset(os.path.join(path, subset), split=partition)
subset_df = pd.DataFrame(subset_data.map(lambda x: {'subset': subset, **x}))
dataframes.append(subset_df)
aggregate_df = pd.concat(dataframes, axis=0)
aggregate = Dataset.from_pandas(aggregate_df)
if '__index_level_0__' in aggregate.column_names:
aggregate = aggregate.remove_columns('__index_level_0__')
return aggregate