[3ff14f]: / medpalm / transformer.py

Download this file

2103 lines (1658 with data), 59.7 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
import math
from dataclasses import dataclass
from functools import partial, wraps
from inspect import isfunction
# constants
from math import ceil
from random import random
from typing import Callable, List, Optional
import torch
import torch.nn.functional as F
from einops import pack, rearrange, reduce, repeat, unpack
from torch import Tensor, einsum, nn
from medpalm.attend import Attend, Intermediates
def exists(val):
return val is not None
def eval_decorator(fn):
def inner(self, *args, **kwargs):
was_training = self.training
self.eval()
out = fn(self, *args, **kwargs)
self.train(was_training)
return out
return inner
# nucleus
def top_p(logits, thres=0.9):
sorted_logits, sorted_indices = torch.sort(
logits, descending=True
)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > (1 - thres)
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[
:, :-1
].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_logits[sorted_indices_to_remove] = float("-inf")
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
# topk
def top_k(logits, thres=0.9):
k = ceil((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float("-inf"))
probs.scatter_(1, ind, val)
return probs
# top_a
def top_a(logits, min_p_pow=2.0, min_p_ratio=0.02):
probs = F.softmax(logits, dim=-1)
limit = torch.pow(torch.max(probs), min_p_pow) * min_p_ratio
logits[probs < limit] = float("-inf")
logits[probs >= limit] = 1
return logits
# autoregressive wrapper class
class AutoregressiveWrapper(nn.Module):
def __init__(
self, net, ignore_index=-100, pad_value=0, mask_prob=0.0
):
super().__init__()
self.pad_value = pad_value
self.ignore_index = ignore_index
self.net = net
self.max_seq_len = net.max_seq_len
# paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432
assert mask_prob < 1.0
self.mask_prob = mask_prob
@torch.no_grad()
@eval_decorator
def generate(
self,
start_tokens,
seq_len,
eos_token=None,
temperature=1.0,
filter_logits_fn=top_k,
filter_thres=0.9,
min_p_pow=2.0,
min_p_ratio=0.02,
**kwargs,
):
start_tokens, ps = pack([start_tokens], "* n")
b, t = start_tokens.shape
out = start_tokens
for _ in range(seq_len):
x = out[:, -self.max_seq_len :]
logits = self.net(x, **kwargs)[:, -1]
if filter_logits_fn in {top_k, top_p}:
filtered_logits = filter_logits_fn(
logits, thres=filter_thres
)
probs = F.softmax(
filtered_logits / temperature, dim=-1
)
elif filter_logits_fn is top_a:
filtered_logits = filter_logits_fn(
logits,
min_p_pow=min_p_pow,
min_p_ratio=min_p_ratio,
)
probs = F.softmax(
filtered_logits / temperature, dim=-1
)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if exists(eos_token):
is_eos_tokens = out == eos_token
if is_eos_tokens.any(dim=-1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(
is_eos_tokens, (1, -1)
)
mask = (
shifted_is_eos_tokens.float().cumsum(dim=-1)
>= 1
)
out = out.masked_fill(mask, self.pad_value)
break
out = out[:, t:]
(out,) = unpack(out, ps, "* n")
return out
def forward(self, x, return_loss=True, **kwargs):
seq, ignore_index = x.shape[1], self.ignore_index
inp, target = x[:, :-1], x[:, 1:]
if self.mask_prob > 0.0:
rand = torch.randn(inp.shape, device=x.device)
rand[:, 0] = -torch.finfo(
rand.dtype
).max # first token should not be masked out
num_mask = min(int(seq * self.mask_prob), seq - 1)
indices = rand.topk(num_mask, dim=-1).indices
mask = (
~torch.zeros_like(inp).scatter(1, indices, 1.0).bool()
)
kwargs.update(self_attn_context_mask=mask)
logits = self.net(inp, **kwargs)
loss = F.cross_entropy(
rearrange(logits, "b n c -> b c n"),
target,
ignore_index=ignore_index,
)
if return_loss:
return logits, loss
return logits
DEFAULT_DIM_HEAD = 64
@dataclass
class LayerIntermediates:
hiddens: Optional[List[Tensor]] = None
attn_intermediates: Optional[List[Intermediates]] = None
layer_hiddens: Optional[List[Tensor]] = None
attn_z_loss: Optional[Tensor] = None
# helpers
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
class always:
def __init__(self, val):
self.val = val
def __call__(self, *args, **kwargs):
return self.val
class not_equals:
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x != self.val
class equals:
def __init__(self, val):
self.val = val
def __call__(self, x, *args, **kwargs):
return x == self.val
def Sequential(*modules):
return nn.Sequential(*filter(exists, modules))
# tensor helpers
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(t, groups=1):
t = rearrange(t, "... (g d) -> ... g d", g=groups)
t = F.normalize(t, p=2, dim=-1)
return rearrange(t, "... g d -> ... (g d)")
def pad_at_dim(t, pad, dim=-1, value=0.0):
dims_from_right = (-dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = (0, 0) * dims_from_right
return F.pad(t, (*zeros, *pad), value=value)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# auxiliary loss helpers
def calc_z_loss(
pre_softmax_attns: List[Tensor], mask=None, weight=1.0
):
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
# also used in PaLM as one of the measures
lse = 0.0
for attn in pre_softmax_attns:
lse = lse + attn.logsumexp(dim=-1)
loss = torch.square(lse)
loss = reduce(loss, "b h n -> b n", "sum")
if not exists(mask):
return loss.mean() * weight
loss = loss[mask].sum() / mask.sum().clamp(min=1e-5)
return loss * weight
# init helpers
def init_zero_(layer):
nn.init.constant_(layer.weight, 0.0)
if exists(layer.bias):
nn.init.constant_(layer.bias, 0.0)
# keyword argument helpers
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(), dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(
partial(string_begins_with, prefix), d
)
kwargs_without_prefix = dict(
map(
lambda x: (x[0][len(prefix) :], x[1]),
tuple(kwargs_with_prefix.items()),
)
)
return kwargs_without_prefix, kwargs
# initializations
def deepnorm_init(
transformer,
beta,
module_name_match_list=[".ff.", ".to_v", ".to_out"],
):
for name, module in transformer.named_modules():
if type(module) != nn.Linear:
continue
needs_beta_gain = any(
map(lambda substr: substr in name, module_name_match_list)
)
gain = beta if needs_beta_gain else 1
nn.init.xavier_normal_(module.weight.data, gain=gain)
if exists(module.bias):
nn.init.constant_(module.bias.data, 0)
# structured dropout, more effective than traditional attention dropouts
def dropout_seq(seq, mask, dropout):
b, n, *_, device = *seq.shape, seq.device
logits = torch.randn(b, n, device=device)
if exists(mask):
mask_value = max_neg_value(logits)
logits = logits.masked_fill(~mask, mask_value)
keep_prob = 1.0 - dropout
num_keep = max(1, int(keep_prob * n))
keep_indices = logits.topk(num_keep, dim=1).indices
batch_indices = torch.arange(b, device=device)
batch_indices = rearrange(batch_indices, "b -> b 1")
seq = seq[batch_indices, keep_indices]
if exists(mask):
seq_counts = mask.sum(dim=-1)
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
keep_mask = torch.arange(num_keep, device=device) < rearrange(
seq_keep_counts, "b -> b 1"
)
mask = mask[batch_indices, keep_indices] & keep_mask
return seq, mask
# activations
class ReluSquared(nn.Module):
def forward(self, x):
return F.relu(x) ** 2
# embedding
class TokenEmbedding(nn.Module):
def __init__(self, dim, num_tokens, l2norm_embed=False):
super().__init__()
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(num_tokens, dim)
def forward(self, x):
token_emb = self.emb(x)
return l2norm(token_emb) if self.l2norm_embed else token_emb
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len, l2norm_embed=False):
super().__init__()
self.scale = dim**-0.5 if not l2norm_embed else 1.0
self.max_seq_len = max_seq_len
self.l2norm_embed = l2norm_embed
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos=None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, (
f"you are passing in a sequence length of {seq_len} but"
" your absolute positional embedding has a max sequence"
f" length of {self.max_seq_len}"
)
if not exists(pos):
pos = torch.arange(seq_len, device=device)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta=10000):
super().__init__()
assert (dim % 2) == 0
self.scale = nn.Parameter(torch.ones(1) * dim**-0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta**-freq_seq
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, x, pos=None):
seq_len, device = x.shape[1], x.device
if not exists(pos):
pos = torch.arange(seq_len, device=device)
emb = einsum("i, j -> i j", pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb * self.scale
class RelativePositionBias(nn.Module):
def __init__(
self,
scale,
causal=False,
num_buckets=32,
max_distance=128,
heads=8,
):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(
num_buckets, heads
)
@staticmethod
def _relative_position_bucket(
relative_position,
causal=True,
num_buckets=32,
max_distance=128,
):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = (
max_exact
+ (
torch.log(n.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).long()
)
val_if_large = torch.min(
val_if_large,
torch.full_like(val_if_large, num_buckets - 1),
)
ret += torch.where(is_small, n, val_if_large)
return ret
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
device = self.device
q_pos = torch.arange(
j - i, j, dtype=torch.long, device=device
)
k_pos = torch.arange(j, dtype=torch.long, device=device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(
rel_pos,
causal=self.causal,
num_buckets=self.num_buckets,
max_distance=self.max_distance,
)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, "i j h -> h i j")
return bias * self.scale
class DynamicPositionBias(nn.Module):
def __init__(
self, dim, *, heads, depth, log_distance=False, norm=False
):
super().__init__()
assert depth >= 1, (
"depth for dynamic position bias MLP must be greater or"
" equal to 1"
)
self.log_distance = log_distance
self.mlp = nn.ModuleList([])
self.mlp.append(
Sequential(
nn.Linear(1, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU(),
)
)
for _ in range(depth - 1):
self.mlp.append(
Sequential(
nn.Linear(dim, dim),
nn.LayerNorm(dim) if norm else None,
nn.SiLU(),
)
)
self.mlp.append(nn.Linear(dim, heads))
@property
def device(self):
return next(self.parameters()).device
def forward(self, i, j):
assert i == j
n, device = j, self.device
# get the (n x n) matrix of distances
seq_arange = torch.arange(n, device=device)
context_arange = torch.arange(n, device=device)
indices = rearrange(seq_arange, "i -> i 1") - rearrange(
context_arange, "j -> 1 j"
)
indices += n - 1
# input to continuous positions MLP
pos = torch.arange(-n + 1, n, device=device).float()
pos = rearrange(pos, "... -> ... 1")
if self.log_distance:
pos = torch.sign(pos) * torch.log(
pos.abs() + 1
) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)
for layer in self.mlp:
pos = layer(pos)
# get position biases
bias = pos[indices]
bias = rearrange(bias, "i j h -> h i j")
return bias
class AlibiPositionalBias(nn.Module):
def __init__(self, heads, total_heads, **kwargs):
super().__init__()
self.heads = heads
self.total_heads = total_heads
slopes = Tensor(self._get_slopes(heads))
slopes = rearrange(slopes, "h -> h 1 1")
self.register_buffer("slopes", slopes, persistent=False)
self.register_buffer("bias", None, persistent=False)
def get_bias(self, i, j, device):
i_arange = torch.arange(j - i, j, device=device)
j_arange = torch.arange(j, device=device)
bias = -torch.abs(
rearrange(j_arange, "j -> 1 1 j")
- rearrange(i_arange, "i -> 1 i 1")
)
return bias
@staticmethod
def _get_slopes(heads):
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(heads).is_integer():
return get_slopes_power_of_2(heads)
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_slopes_power_of_2(2 * closest_power_of_2)[0::2][
: heads - closest_power_of_2
]
)
@property
def device(self):
return next(self.buffers()).device
def forward(self, i, j):
h, device = self.total_heads, self.device
if (
exists(self.bias)
and self.bias.shape[-1] >= j
and self.bias.shape[-2] >= i
):
return self.bias[..., :i, :j]
bias = self.get_bias(i, j, device)
bias = bias * self.slopes
num_heads_unalibied = h - bias.shape[0]
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim=0)
self.register_buffer("bias", bias, persistent=False)
return self.bias
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos=False,
scale_base=512,
interpolation_factor=1.0,
base=10000,
base_rescale_factor=1.0,
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1.0 / (
base ** (torch.arange(0, dim, 2).float() / dim)
)
self.register_buffer("inv_freq", inv_freq)
assert interpolation_factor >= 1.0
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer("scale", None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer("scale", scale)
def forward(self, seq_len, device):
t = torch.arange(seq_len, device=device).type_as(
self.inv_freq
)
t = t / self.interpolation_factor
freqs = torch.einsum("i , j -> i j", t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim=-1)
if not exists(self.scale):
return freqs, 1.0
power = (
torch.arange(seq_len, device=device) - (seq_len // 2)
) / self.scale_base
scale = self.scale ** rearrange(power, "n -> n 1")
scale = torch.cat((scale, scale), dim=-1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, "... (j d) -> ... j d", j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(t, freqs, scale=1):
seq_len = t.shape[-2]
freqs = freqs[-seq_len:, :]
return (t * freqs.cos() * scale) + (
rotate_half(t) * freqs.sin() * scale
)
# norms
class Scale(nn.Module):
def __init__(self, value, fn):
super().__init__()
self.value = value
self.fn = fn
def forward(self, x, **kwargs):
out = self.fn(x, **kwargs)
def scale_fn(t):
return t * self.value
if not isinstance(out, tuple):
return scale_fn(out)
return (scale_fn(out[0]), *out[1:])
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1) * (dim**-0.5))
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True)
return x / norm.clamp(min=self.eps) * self.g
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim**0.5
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim=-1) * self.scale * self.g
class SimpleRMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim**0.5
def forward(self, x):
return F.normalize(x, dim=-1) * self.scale
# residual and residual gates
class Residual(nn.Module):
def __init__(
self, dim, scale_residual=False, scale_residual_constant=1.0
):
super().__init__()
self.residual_scale = (
nn.Parameter(torch.ones(dim)) if scale_residual else None
)
self.scale_residual_constant = scale_residual_constant
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
if self.scale_residual_constant != 1:
residual = residual * self.scale_residual_constant
return x + residual
class GRUGating(nn.Module):
def __init__(self, dim, scale_residual=False, **kwargs):
super().__init__()
self.gru = nn.GRUCell(dim, dim)
self.residual_scale = (
nn.Parameter(torch.ones(dim)) if scale_residual else None
)
def forward(self, x, residual):
if exists(self.residual_scale):
residual = residual * self.residual_scale
gated_output = self.gru(
rearrange(x, "b n d -> (b n) d"),
rearrange(residual, "b n d -> (b n) d"),
)
return gated_output.reshape_as(x)
# token shifting
def shift(t, amount, mask=None):
if amount == 0:
return t
else:
amount = min(amount, t.shape[1])
if exists(mask):
t = t.masked_fill(~mask[..., None], 0.0)
return pad_at_dim(t, (amount, -amount), dim=-2, value=0.0)
class ShiftTokens(nn.Module):
def __init__(self, shifts, fn):
super().__init__()
self.fn = fn
self.shifts = tuple(shifts)
def forward(self, x, **kwargs):
mask = kwargs.get("mask", None)
shifts = self.shifts
segments = len(shifts)
feats_per_shift = x.shape[-1] // segments
splitted = x.split(feats_per_shift, dim=-1)
segments_to_shift, rest = (
splitted[:segments],
splitted[segments:],
)
segments_to_shift = list(
map(
lambda args: shift(*args, mask=mask),
zip(segments_to_shift, shifts),
)
)
x = torch.cat((*segments_to_shift, *rest), dim=-1)
return self.fn(x, **kwargs)
# feedforward
class GLU(nn.Module):
def __init__(
self, dim_in, dim_out, activation: Callable, mult_bias=False
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2)
self.mult_bias = (
nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.0
)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * self.act(gate) * self.mult_bias
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
glu=False,
glu_mult_bias=False,
swish=False,
relu_squared=False,
post_act_ln=False,
dropout=0.0,
no_bias=False,
zero_init_output=False,
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
if relu_squared:
activation = ReluSquared()
elif swish:
activation = nn.SiLU()
else:
activation = nn.GELU()
if glu:
project_in = GLU(
dim, inner_dim, activation, mult_bias=glu_mult_bias
)
else:
project_in = nn.Sequential(
nn.Linear(dim, inner_dim, bias=not no_bias),
activation,
)
self.ff = Sequential(
project_in,
nn.LayerNorm(inner_dim) if post_act_ln else None,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out, bias=not no_bias),
)
# init last linear layer to 0
if zero_init_output:
init_zero_(self.ff[-1])
def forward(self, x):
return self.ff(x)
# attention. it is all we need
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head=DEFAULT_DIM_HEAD,
heads=8,
causal=False,
flash=False,
talking_heads=False,
head_scale=False,
sparse_topk=None,
num_mem_kv=0,
dropout=0.0,
on_attn=False,
gate_values=False,
zero_init_output=False,
max_attend_past=None,
qk_norm=False,
qk_norm_groups=1,
qk_norm_scale=10,
qk_norm_dim_scale=False,
one_kv_head=False,
shared_kv=False,
value_dim_head=None,
tensor_product=False, # https://arxiv.org/abs/2208.06061
cascading_heads=False,
add_zero_kv=False, # same as add_zero_attn in pytorch
onnxable=False,
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
self.causal = causal
self.max_attend_past = max_attend_past
value_dim_head = default(value_dim_head, dim_head)
q_dim = k_dim = dim_head * heads
v_dim = out_dim = value_dim_head * heads
self.one_kv_head = one_kv_head
if one_kv_head:
k_dim = dim_head
v_dim = value_dim_head
out_dim = v_dim * heads
self.to_q = nn.Linear(dim, q_dim, bias=False)
self.to_k = nn.Linear(dim, k_dim, bias=False)
# shared key / values, for further memory savings during inference
assert not (shared_kv and value_dim_head != dim_head), (
"key and value head dimensions must be equal for shared"
" key / values"
)
self.to_v = (
nn.Linear(dim, v_dim, bias=False)
if not shared_kv
else None
)
# relations projection from tp-attention
self.to_r = (
nn.Linear(dim, v_dim, bias=False)
if tensor_product
else None
)
# add GLU gating for aggregated values, from alphafold2
self.to_v_gate = None
if gate_values:
self.to_v_gate = nn.Linear(dim, out_dim)
nn.init.constant_(self.to_v_gate.weight, 0)
nn.init.constant_(self.to_v_gate.bias, 1)
# cosine sim attention
self.qk_norm = qk_norm
self.qk_norm_groups = qk_norm_groups
self.qk_norm_scale = qk_norm_scale
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
self.qk_norm_dim_scale = qk_norm_dim_scale
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
if qk_norm and qk_norm_dim_scale:
self.qk_norm_q_scale = nn.Parameter(torch.ones(dim_head))
self.qk_norm_k_scale = nn.Parameter(torch.ones(dim_head))
assert (not qk_norm) or (dim_head % qk_norm_groups) == 0, (
"dimension per attention head must be divisible by the qk"
" norm groups"
)
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), (
"the group dimension may be too small (2 was too small in"
" my tests, but 4 still works, surprisingly)"
)
# attend class - includes core attention algorithm + talking heads
self.attend = Attend(
heads=heads,
causal=causal,
talking_heads=talking_heads,
dropout=dropout,
sparse_topk=sparse_topk,
qk_norm=qk_norm,
scale=qk_norm_scale if qk_norm else self.scale,
add_zero_kv=add_zero_kv,
flash=flash,
onnxable=onnxable,
)
# head scaling
self.head_scale = head_scale
if head_scale:
self.head_scale_params = nn.Parameter(
torch.ones(1, heads, 1, 1)
)
# explicit topk sparse attention
self.sparse_topk = sparse_topk
# add memory key / values
self.num_mem_kv = num_mem_kv
if num_mem_kv > 0:
self.mem_k = nn.Parameter(
torch.randn(heads, num_mem_kv, dim_head)
)
self.mem_v = nn.Parameter(
torch.randn(heads, num_mem_kv, dim_head)
)
# attention on attention
self.attn_on_attn = on_attn
self.to_out = (
nn.Sequential(
nn.Linear(out_dim, dim * 2, bias=False), nn.GLU()
)
if on_attn
else nn.Linear(out_dim, dim, bias=False)
)
# init output projection 0
if zero_init_output:
init_zero_(self.to_out)
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
attn_mask=None,
rel_pos=None,
rotary_pos_emb=None,
prev_attn=None,
mem=None,
):
b, n, _, h, head_scale, device, has_context = (
*x.shape,
self.heads,
self.head_scale,
x.device,
exists(context),
)
kv_input = default(context, x)
q_input = x
k_input = kv_input
v_input = kv_input
r_input = x
if exists(mem):
k_input = torch.cat((mem, k_input), dim=-2)
v_input = torch.cat((mem, v_input), dim=-2)
q = self.to_q(q_input)
k = self.to_k(k_input)
v = self.to_v(v_input) if exists(self.to_v) else k
r = self.to_r(r_input) if exists(self.to_r) else None
q = rearrange(q, "b n (h d) -> b h n d", h=h)
if not self.one_kv_head:
k, v, r = map(
lambda t: maybe(rearrange)(
t, "b n (h d) -> b h n d", h=h
),
(k, v, r),
)
if self.qk_norm:
qk_l2norm = partial(l2norm, groups=self.qk_norm_groups)
q, k = map(qk_l2norm, (q, k))
q = q * self.qk_norm_q_scale
k = k * self.qk_norm_k_scale
if exists(rotary_pos_emb) and not has_context:
freqs, xpos_scale = rotary_pos_emb
l = freqs.shape[-1]
q_xpos_scale, k_xpos_scale = (
(xpos_scale, xpos_scale**-1.0)
if exists(xpos_scale)
else (1.0, 1.0)
)
(ql, qr), (kl, kr), (vl, vr) = map(
lambda t: (t[..., :l], t[..., l:]), (q, k, v)
)
ql, kl, vl = map(
lambda arg: apply_rotary_pos_emb(
arg[0], freqs, arg[1]
),
(
(ql, q_xpos_scale),
(kl, k_xpos_scale),
(vl, k_xpos_scale),
),
)
q, k, v = map(
lambda t: torch.cat(t, dim=-1),
((ql, qr), (kl, kr), (vl, vr)),
)
input_mask = context_mask if has_context else mask
if self.num_mem_kv > 0:
mem_k, mem_v = map(
lambda t: repeat(t, "h n d -> b h n d", b=b),
(self.mem_k, self.mem_v),
)
if self.qk_norm:
mem_k = l2norm(mem_k)
mem_k = mem_k * self.qk_norm_k_scale
k = torch.cat((mem_k, k), dim=-2)
v = torch.cat((mem_v, v), dim=-2)
if exists(input_mask):
input_mask = pad_at_dim(
input_mask,
(self.num_mem_kv, 0),
dim=-1,
value=True,
)
i, j = map(lambda t: t.shape[-2], (q, k))
# determine masking
max_neg_value(q)
masks = []
final_attn_mask = None
if exists(input_mask):
input_mask = rearrange(input_mask, "b j -> b 1 1 j")
masks.append(~input_mask)
if exists(attn_mask):
assert 2 <= attn_mask.ndim <= 4, (
"attention mask must have greater than 2 dimensions"
" but less than or equal to 4"
)
if attn_mask.ndim == 2:
attn_mask = rearrange(attn_mask, "i j -> 1 1 i j")
elif attn_mask.ndim == 3:
attn_mask = rearrange(attn_mask, "h i j -> 1 h i j")
masks.append(~attn_mask)
if exists(self.max_attend_past):
range_q = torch.arange(j - i, j, device=device)
range_k = torch.arange(j, device=device)
dist = rearrange(range_q, "i -> 1 1 i 1") - rearrange(
range_k, "j -> 1 1 1 j"
)
max_attend_past_mask = dist > self.max_attend_past
masks.append(max_attend_past_mask)
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
# prepare relative positional bias, if needed
attn_bias = None
if exists(rel_pos):
attn_bias = rel_pos(i, j)
# attention is all we need
out, intermediates = self.attend(
q,
k,
v,
mask=final_attn_mask,
attn_bias=attn_bias,
prev_attn=prev_attn,
)
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients
if exists(r):
out = out * r + out
# normformer scaling of heads
if head_scale:
out = out * self.head_scale_params
# merge heads
out = rearrange(out, "b h n d -> b n (h d)")
# alphafold2 styled gating of the values
if exists(self.to_v_gate):
gates = self.to_v_gate(x)
out = out * gates.sigmoid()
# combine the heads
out = self.to_out(out)
if exists(mask):
mask = rearrange(mask, "b n -> b n 1")
out = out.masked_fill(~mask, 0.0)
return out, intermediates
class AttentionLayers(nn.Module):
def __init__(
self,
dim,
depth,
heads=8,
causal=False,
cross_attend=False,
only_cross=False,
use_scalenorm=False,
use_rmsnorm=False,
use_simple_rmsnorm=False,
alibi_pos_bias=False,
alibi_num_heads=None,
rel_pos_bias=False,
rel_pos_num_buckets=32,
rel_pos_max_distance=128,
dynamic_pos_bias=False,
dynamic_pos_bias_log_distance=False,
dynamic_pos_bias_mlp_depth=2,
dynamic_pos_bias_norm=False,
rotary_pos_emb=False,
rotary_emb_dim=None,
rotary_xpos=False,
rotary_interpolation_factor=1.0,
rotary_xpos_scale_base=512,
rotary_base_rescale_factor=1.0,
custom_layers=None,
sandwich_coef=None,
par_ratio=None,
residual_attn=False,
cross_residual_attn=False,
macaron=False,
pre_norm=True,
pre_norm_has_final_norm=True,
gate_residual=False,
scale_residual=False,
scale_residual_constant=1.0,
deepnorm=False,
shift_tokens=0,
sandwich_norm=False,
resi_dual=False,
resi_dual_scale=1.0,
zero_init_branch_output=False,
layer_dropout=0.0,
cross_attn_tokens_dropout=0.0,
**kwargs,
):
super().__init__()
rotary_pos_emb = rotary_pos_emb or rotary_xpos
ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs)
attn_kwargs, kwargs = groupby_prefix_and_trim("attn_", kwargs)
dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD)
self.dim = dim
self.depth = depth
self.layers = nn.ModuleList([])
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
rotary_emb_dim = max(
default(rotary_emb_dim, dim_head // 2), 32
)
assert not (rotary_xpos and not causal), (
"rotary xpos is not compatible with bidirectional"
" attention"
)
self.rotary_pos_emb = (
RotaryEmbedding(
rotary_emb_dim,
use_xpos=rotary_xpos,
scale_base=rotary_xpos_scale_base,
interpolation_factor=rotary_interpolation_factor,
base_rescale_factor=rotary_base_rescale_factor,
)
if rotary_pos_emb
else None
)
assert not (alibi_pos_bias and rel_pos_bias), (
"you can only choose Alibi positional bias or T5 relative"
" positional bias, not both"
)
assert rel_pos_num_buckets <= rel_pos_max_distance, (
"number of relative position buckets must be less than"
" the relative position max distance"
)
# relative positional bias
flash_attn = attn_kwargs.get("flash", False)
assert (
int(rel_pos_bias)
+ int(dynamic_pos_bias)
+ int(alibi_pos_bias)
) <= 1, (
"you can only choose up to one of t5, alibi, or dynamic"
" positional bias"
)
self.rel_pos = None
if rel_pos_bias:
assert not flash_attn, (
"flash attention not compatible with t5 relative"
" positional bias"
)
self.rel_pos = RelativePositionBias(
scale=dim_head**0.5,
causal=causal,
heads=heads,
num_buckets=rel_pos_num_buckets,
max_distance=rel_pos_max_distance,
)
elif dynamic_pos_bias:
assert not flash_attn, (
"flash attention not compatible with dynamic"
" positional bias"
)
self.rel_pos = DynamicPositionBias(
dim=dim // 4,
heads=heads,
log_distance=dynamic_pos_bias_log_distance,
depth=dynamic_pos_bias_mlp_depth,
norm=dynamic_pos_bias_norm,
)
elif alibi_pos_bias:
alibi_num_heads = default(alibi_num_heads, heads)
assert alibi_num_heads <= heads, (
"number of ALiBi heads must be less than the total"
" number of heads"
)
self.rel_pos = AlibiPositionalBias(
heads=alibi_num_heads, total_heads=heads
)
# determine deepnorm and residual scale
if deepnorm:
assert scale_residual_constant == 1, (
"scale residual constant is being overridden by deep"
" norm settings"
)
pre_norm = sandwich_norm = resi_dual = False
scale_residual = True
scale_residual_constant = (2 * depth) ** 0.25
assert (int(sandwich_norm) + int(resi_dual)) <= 1, (
"either sandwich norm or resiDual is selected, but not"
" both"
)
assert not (
not pre_norm and sandwich_norm
), "sandwich norm cannot be used when not using prenorm"
if resi_dual:
pre_norm = False
self.pre_norm = pre_norm
self.sandwich_norm = sandwich_norm
self.resi_dual = resi_dual
assert 0 < resi_dual_scale <= 1.0, (
"resiDual prenorm residual must be scaled by a factor"
" greater than 0 and less than or equal to 1."
)
self.resi_dual_scale = resi_dual_scale
self.residual_attn = residual_attn
self.cross_residual_attn = cross_residual_attn
assert not (
flash_attn and (residual_attn or cross_residual_attn)
), "flash attention is not compatible with residual attention"
self.cross_attend = cross_attend
assert (
int(use_scalenorm)
+ int(use_rmsnorm)
+ int(use_simple_rmsnorm)
) <= 1, (
"you can only use either scalenorm, rmsnorm, or simple"
" rmsnorm"
)
if use_scalenorm:
norm_class = ScaleNorm
elif use_rmsnorm:
norm_class = RMSNorm
elif use_simple_rmsnorm:
norm_class = SimpleRMSNorm
else:
norm_class = nn.LayerNorm
norm_fn = partial(norm_class, dim)
if cross_attend and not only_cross:
default_block = ("a", "c", "f")
elif cross_attend and only_cross:
default_block = ("c", "f")
else:
default_block = ("a", "f")
if macaron:
default_block = ("f",) + default_block
# zero init
if zero_init_branch_output:
attn_kwargs = {**attn_kwargs, "zero_init_output": True}
ff_kwargs = {**ff_kwargs, "zero_init_output": True}
# calculate layer block order
if exists(custom_layers):
layer_types = custom_layers
elif exists(par_ratio):
par_depth = depth * len(default_block)
assert (
1 < par_ratio <= par_depth
), "par ratio out of range"
default_block = tuple(
filter(not_equals("f"), default_block)
)
par_attn = par_depth // par_ratio
depth_cut = (
par_depth * 2 // 3
) # 2 / 3 attention layer cutoff suggested by PAR paper
par_width = (
depth_cut + depth_cut // par_attn
) // par_attn
assert (
len(default_block) <= par_width
), "default block is too large for par_ratio"
par_block = default_block + ("f",) * (
par_width - len(default_block)
)
par_head = par_block * par_attn
layer_types = par_head + ("f",) * (
par_depth - len(par_head)
)
elif exists(sandwich_coef):
assert (
sandwich_coef > 0 and sandwich_coef <= depth
), "sandwich coefficient should be less than the depth"
layer_types = (
("a",) * sandwich_coef
+ default_block * (depth - sandwich_coef)
+ ("f",) * sandwich_coef
)
else:
layer_types = default_block * depth
self.layer_types = layer_types
self.num_attn_layers = len(
list(filter(equals("a"), layer_types))
)
# stochastic depth
self.layer_dropouts = cast_tuple(
layer_dropout, len(layer_types)
)
# structured dropout for cross attending
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
# calculate token shifting
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
# whether it has post norm
self.final_norm = (
norm_fn() if pre_norm or resi_dual else nn.Identity()
)
# iterate and construct layers
for ind, (layer_type, layer_shift_tokens) in enumerate(
zip(self.layer_types, shift_tokens)
):
ind == (len(self.layer_types) - 1)
if layer_type == "a":
layer = Attention(
dim, heads=heads, causal=causal, **attn_kwargs
)
elif layer_type == "c":
layer = Attention(dim, heads=heads, **attn_kwargs)
elif layer_type == "f":
layer = FeedForward(dim, **ff_kwargs)
layer = layer if not macaron else Scale(0.5, layer)
else:
raise Exception(f"invalid layer type {layer_type}")
if layer_shift_tokens > 0:
shift_range_upper = layer_shift_tokens + 1
shift_range_lower = (
-layer_shift_tokens if not causal else 0
)
layer = ShiftTokens(
range(shift_range_lower, shift_range_upper), layer
)
residual_fn = GRUGating if gate_residual else Residual
residual = residual_fn(
dim,
scale_residual=scale_residual,
scale_residual_constant=scale_residual_constant,
)
pre_branch_norm = norm_fn() if pre_norm else None
post_branch_norm = norm_fn() if sandwich_norm else None
post_main_norm = norm_fn() if not pre_norm else None
norms = nn.ModuleList(
[pre_branch_norm, post_branch_norm, post_main_norm]
)
self.layers.append(
nn.ModuleList([norms, layer, residual])
)
if deepnorm:
init_gain = (8 * depth) ** -0.25
deepnorm_init(self, init_gain)
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
attn_mask=None,
self_attn_context_mask=None,
mems=None,
return_hiddens=False,
):
assert not (
self.cross_attend ^ exists(context)
), "context must be passed in if cross_attend is set to True"
hiddens = []
layer_hiddens = []
intermediates = []
prev_attn = None
prev_cross_attn = None
mems = (
mems.copy()
if exists(mems)
else [None] * self.num_attn_layers
)
rotary_pos_emb = None
if exists(self.rotary_pos_emb):
max_rotary_emb_length = max(
list(
map(
lambda m: (m.shape[1] if exists(m) else 0)
+ x.shape[1],
mems,
)
)
)
rotary_pos_emb = self.rotary_pos_emb(
max_rotary_emb_length, x.device
)
outer_residual = x * self.resi_dual_scale
for ind, (
layer_type,
(norm, block, residual_fn),
layer_dropout,
) in enumerate(
zip(self.layer_types, self.layers, self.layer_dropouts)
):
ind == (len(self.layers) - 1)
if (
self.training
and layer_dropout > 0.0
and random() < layer_dropout
):
continue
if layer_type == "a":
if return_hiddens:
hiddens.append(x)
layer_mem = mems.pop(0) if mems else None
if layer_type == "c":
if (
self.training
and self.cross_attn_tokens_dropout > 0.0
):
context, context_mask = dropout_seq(
context,
context_mask,
self.cross_attn_tokens_dropout,
)
inner_residual = x
if return_hiddens:
layer_hiddens.append(x)
pre_norm, post_branch_norm, post_main_norm = norm
if exists(pre_norm):
x = pre_norm(x)
if layer_type == "a":
out, inter = block(
x,
mask=mask,
context_mask=self_attn_context_mask,
attn_mask=attn_mask,
rel_pos=self.rel_pos,
rotary_pos_emb=rotary_pos_emb,
prev_attn=prev_attn,
mem=layer_mem,
)
elif layer_type == "c":
out, inter = block(
x,
context=context,
mask=mask,
context_mask=context_mask,
prev_attn=prev_cross_attn,
)
elif layer_type == "f":
out = block(x)
if self.resi_dual:
outer_residual = (
outer_residual + out * self.resi_dual_scale
)
if exists(post_branch_norm):
out = post_branch_norm(out)
x = residual_fn(out, inner_residual)
if layer_type in ("a", "c") and return_hiddens:
intermediates.append(inter)
if layer_type == "a" and self.residual_attn:
prev_attn = inter.pre_softmax_attn
elif layer_type == "c" and self.cross_residual_attn:
prev_cross_attn = inter.pre_softmax_attn
if exists(post_main_norm):
x = post_main_norm(x)
if return_hiddens:
layer_hiddens.append(x)
if self.resi_dual:
x = x + self.final_norm(outer_residual)
else:
x = self.final_norm(x)
if return_hiddens:
intermediates = LayerIntermediates(
hiddens=hiddens,
attn_intermediates=intermediates,
layer_hiddens=layer_hiddens,
)
return x, intermediates
return x
class Encoder(AttentionLayers):
def __init__(self, **kwargs):
assert (
"causal" not in kwargs
), "cannot set causality on encoder"
super().__init__(causal=False, **kwargs)
class Decoder(AttentionLayers):
def __init__(self, **kwargs):
assert (
"causal" not in kwargs
), "cannot set causality on decoder"
super().__init__(causal=True, **kwargs)
class CrossAttender(AttentionLayers):
def __init__(self, **kwargs):
super().__init__(cross_attend=True, only_cross=True, **kwargs)
class ViTransformerWrapper(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
attn_layers,
channels=3,
num_classes=None,
post_emb_norm=False,
emb_dropout=0.0,
):
super().__init__()
assert isinstance(
attn_layers, Encoder
), "attention layers must be an Encoder"
assert (
image_size % patch_size == 0
), "image dimensions must be divisible by the patch size"
dim = attn_layers.dim
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size**2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(
torch.randn(1, num_patches, dim)
)
self.patch_to_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.post_emb_norm = (
nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
)
self.dropout = nn.Dropout(emb_dropout)
self.attn_layers = attn_layers
self.mlp_head = (
nn.Linear(dim, num_classes)
if exists(num_classes)
else nn.Identity()
)
def forward(self, img, return_embeddings=False):
p = self.patch_size
x = rearrange(
img, "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=p, p2=p
)
x = self.patch_to_embedding(x)
n = x.shape[1]
x = x + self.pos_embedding[:, :n]
x = self.post_emb_norm(x)
x = self.dropout(x)
x = self.attn_layers(x)
if not exists(self.mlp_head) or return_embeddings:
return x
x = x.mean(dim=-2)
return self.mlp_head(x)
class Transformer(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
attn_layers,
emb_dim=None,
max_mem_len=0,
shift_mem_down=0,
emb_dropout=0.0,
post_emb_norm=False,
num_memory_tokens=None,
tie_embedding=False,
logits_dim=None,
use_abs_pos_emb=True,
scaled_sinu_pos_emb=False,
l2norm_embed=False,
emb_frac_gradient=1.0, # GLM-130B and Cogview successfully used this, set at 0.1
attn_z_loss_weight=1e-4,
):
super().__init__()
assert isinstance(
attn_layers, AttentionLayers
), "attention layers must be one of Encoder or Decoder"
dim = attn_layers.dim
emb_dim = default(emb_dim, dim)
self.emb_dim = emb_dim
self.num_tokens = num_tokens
self.max_seq_len = max_seq_len
self.max_mem_len = max_mem_len
self.shift_mem_down = shift_mem_down
self.l2norm_embed = l2norm_embed
self.token_emb = TokenEmbedding(
emb_dim, num_tokens, l2norm_embed=l2norm_embed
)
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
self.pos_emb = always(0)
elif scaled_sinu_pos_emb:
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
else:
self.pos_emb = AbsolutePositionalEmbedding(
emb_dim, max_seq_len, l2norm_embed=l2norm_embed
)
self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290
self.post_emb_norm = (
nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
)
self.emb_dropout = nn.Dropout(emb_dropout)
self.project_emb = (
nn.Linear(emb_dim, dim)
if emb_dim != dim
else nn.Identity()
)
self.attn_layers = attn_layers
self.init_()
logits_dim = default(logits_dim, num_tokens)
self.to_logits = (
nn.Linear(dim, logits_dim)
if not tie_embedding
else lambda t: t @ self.token_emb.emb.weight.t()
)
# memory tokens (like [cls]) from Memory Transformers paper
num_memory_tokens = default(num_memory_tokens, 0)
self.num_memory_tokens = num_memory_tokens
if num_memory_tokens > 0:
self.memory_tokens = nn.Parameter(
torch.randn(num_memory_tokens, dim)
)
def init_(self):
if self.l2norm_embed:
nn.init.normal_(self.token_emb.emb.weight, std=1e-5)
if not isinstance(self.pos_emb, always):
nn.init.normal_(self.pos_emb.emb.weight, std=1e-5)
return
nn.init.kaiming_normal_(self.token_emb.emb.weight)
def forward(
self,
x,
return_embeddings=False,
return_logits_and_embeddings=False,
return_intermediates=False,
mask=None,
return_mems=False,
return_attn=False,
mems=None,
pos=None,
prepend_embeds=None,
sum_embeds=None,
return_attn_z_loss=False,
attn_z_loss_weight=1e-4,
**kwargs,
):
b, n, device, num_mem, emb_frac_gradient = (
*x.shape,
x.device,
self.num_memory_tokens,
self.emb_frac_gradient,
)
return_hiddens = (
return_mems
| return_attn
| return_intermediates
| return_attn_z_loss
)
# absolute positional embedding
external_pos_emb = exists(pos) and pos.dtype != torch.long
pos_emb = (
self.pos_emb(x, pos=pos) if not external_pos_emb else pos
)
x = self.token_emb(x) + pos_emb
# for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training
if exists(sum_embeds):
x = x + sum_embeds
# post embedding norm, purportedly leads to greater stabilization
x = self.post_emb_norm(x)
# whether to append embeds, as in PaLI, for image embeddings
if exists(prepend_embeds):
prepend_seq, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], (
"prepended embeddings need to have same dimensions as"
" text model dimensions"
)
x = torch.cat((prepend_embeds, x), dim=-2)
# whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model
if emb_frac_gradient < 1:
assert emb_frac_gradient > 0
x = x * emb_frac_gradient + x.detach() * (
1 - emb_frac_gradient
)
# embedding dropout
x = self.emb_dropout(x)
x = self.project_emb(x)
if num_mem > 0:
mem = repeat(self.memory_tokens, "n d -> b n d", b=b)
x = torch.cat((mem, x), dim=1)
# auto-handle masking after appending memory tokens
if exists(mask):
mask = pad_at_dim(
mask, (num_mem, 0), dim=-1, value=True
)
if self.shift_mem_down and exists(mems):
mems_l, mems_r = (
mems[: self.shift_mem_down],
mems[self.shift_mem_down :],
)
mems = [*mems_r, *mems_l]
if return_hiddens:
x, intermediates = self.attn_layers(
x, mask=mask, mems=mems, return_hiddens=True, **kwargs
)
else:
x = self.attn_layers(x, mask=mask, mems=mems, **kwargs)
mem, x = x[:, :num_mem], x[:, num_mem:]
if return_logits_and_embeddings:
out = (self.to_logits(x), x)
elif return_embeddings:
out = x
else:
out = self.to_logits(x)
if return_attn_z_loss:
pre_softmax_attns = list(
map(
lambda t: t.pre_softmax_attn,
intermediates.attn_intermediates,
)
)
intermediates.attn_z_loss = calc_z_loss(
pre_softmax_attns, weight=attn_z_loss_weight
)
return_intermediates = True
if return_intermediates:
return out, intermediates
if return_mems:
hiddens = intermediates.hiddens
new_mems = (
list(
map(
lambda pair: torch.cat(pair, dim=-2),
zip(mems, hiddens),
)
)
if exists(mems)
else hiddens
)
new_mems = list(
map(
lambda t: t[..., -self.max_mem_len :, :].detach(),
new_mems,
)
)
return out, new_mems
if return_attn:
attn_maps = list(
map(
lambda t: t.post_softmax_attn,
intermediates.attn_intermediates,
)
)
return out, attn_maps
return out