[1180c1]: / llava / serve / cli.py

Download this file

154 lines (126 with data), 5.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Usage:
python3 -m fastchat.serve.cli --model ~/model_weights/llama-7b
"""
import argparse
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from llava.conversation import conv_templates, SeparatorStyle
@torch.inference_mode()
def generate_stream(tokenizer, model, params, device,
context_len=2048, stream_interval=2):
"""Adapted from fastchat/serve/model_worker.py::generate_stream"""
prompt = params["prompt"]
l_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
stop_str = params.get("stop", None)
input_ids = tokenizer(prompt).input_ids
output_ids = list(input_ids)
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
for i in range(max_new_tokens):
if i == 0:
out = model(
torch.as_tensor([input_ids], device=device), use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
else:
attention_mask = torch.ones(
1, past_key_values[0][0].shape[-2] + 1, device=device)
out = model(input_ids=torch.as_tensor([[token]], device=device),
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
logits = out.logits
past_key_values = out.past_key_values
last_token_logits = logits[0][-1]
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
if token == tokenizer.eos_token_id:
stopped = True
else:
stopped = False
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
output = tokenizer.decode(output_ids, skip_special_tokens=True)
pos = output.rfind(stop_str, l_prompt)
if pos != -1:
output = output[:pos]
stopped = True
yield output
if stopped:
break
del past_key_values
def main(args):
model_name = args.model_name
num_gpus = args.num_gpus
# Model
if args.device == "cuda":
kwargs = {"torch_dtype": torch.float16}
if num_gpus == "auto":
kwargs["device_map"] = "auto"
else:
num_gpus = int(num_gpus)
if num_gpus != 1:
kwargs.update({
"device_map": "auto",
"max_memory": {i: "13GiB" for i in range(num_gpus)},
})
elif args.device == "cpu":
kwargs = {}
else:
raise ValueError(f"Invalid device: {args.device}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,
low_cpu_mem_usage=True, **kwargs)
if args.device == "cuda" and num_gpus == 1:
model.cuda()
# Chat
conv = conv_templates[args.conv_template].copy()
while True:
try:
inp = input(f"{conv.roles[0]}: ")
except EOFError:
inp = ""
if not inp:
print("exit...")
break
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
params = {
"model": model_name,
"prompt": prompt,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"stop": conv.sep if conv.sep_style == SeparatorStyle.SINGLE else conv.sep2,
}
print(f"{conv.roles[1]}: ", end="", flush=True)
pre = 0
for outputs in generate_stream(tokenizer, model, params, args.device):
outputs = outputs[len(prompt) + 1:].strip()
outputs = outputs.split(" ")
now = len(outputs)
if now - 1 > pre:
print(" ".join(outputs[pre:now-1]), end=" ", flush=True)
pre = now - 1
print(" ".join(outputs[pre:]), flush=True)
conv.messages[-1][-1] = " ".join(outputs)
if args.debug:
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--num-gpus", type=str, default="1")
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument("--conv-template", type=str, default="v1")
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
main(args)