[1180c1]: / llava / notebook / visualize_instruction_data.ipynb

Download this file

797 lines (796 with data), 47.5 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting benepar\n",
      "  Downloading benepar-0.2.0.tar.gz (33 kB)\n",
      "  Preparing metadata (setup.py) ... \u001b[?25ldone\n",
      "\u001b[?25hRequirement already satisfied: nltk>=3.2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from benepar) (3.8.1)\n",
      "Collecting spacy>=2.0.9 (from benepar)\n",
      "  Downloading spacy-3.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.6/6.6 MB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: torch>=1.6.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from benepar) (2.0.0)\n",
      "Collecting torch-struct>=0.5 (from benepar)\n",
      "  Downloading torch_struct-0.5-py3-none-any.whl (34 kB)\n",
      "Requirement already satisfied: tokenizers>=0.9.4 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from benepar) (0.12.1)\n",
      "Requirement already satisfied: transformers[tokenizers,torch]>=4.2.2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from benepar) (4.28.0.dev0)\n",
      "Requirement already satisfied: protobuf in /anaconda/envs/llava_med/lib/python3.10/site-packages (from benepar) (4.22.4)\n",
      "Requirement already satisfied: sentencepiece>=0.1.91 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from benepar) (0.1.99)\n",
      "Requirement already satisfied: click in /anaconda/envs/llava_med/lib/python3.10/site-packages (from nltk>=3.2->benepar) (8.1.3)\n",
      "Requirement already satisfied: joblib in /anaconda/envs/llava_med/lib/python3.10/site-packages (from nltk>=3.2->benepar) (1.2.0)\n",
      "Requirement already satisfied: regex>=2021.8.3 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from nltk>=3.2->benepar) (2023.5.5)\n",
      "Requirement already satisfied: tqdm in /anaconda/envs/llava_med/lib/python3.10/site-packages (from nltk>=3.2->benepar) (4.65.0)\n",
      "Collecting spacy-legacy<3.1.0,>=3.0.11 (from spacy>=2.0.9->benepar)\n",
      "  Downloading spacy_legacy-3.0.12-py2.py3-none-any.whl (29 kB)\n",
      "Collecting spacy-loggers<2.0.0,>=1.0.0 (from spacy>=2.0.9->benepar)\n",
      "  Downloading spacy_loggers-1.0.4-py3-none-any.whl (11 kB)\n",
      "Collecting murmurhash<1.1.0,>=0.28.0 (from spacy>=2.0.9->benepar)\n",
      "  Downloading murmurhash-1.0.9-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21 kB)\n",
      "Collecting cymem<2.1.0,>=2.0.2 (from spacy>=2.0.9->benepar)\n",
      "  Downloading cymem-2.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34 kB)\n",
      "Collecting preshed<3.1.0,>=3.0.2 (from spacy>=2.0.9->benepar)\n",
      "  Downloading preshed-3.0.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (124 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.7/124.7 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hCollecting thinc<8.2.0,>=8.1.8 (from spacy>=2.0.9->benepar)\n",
      "  Downloading thinc-8.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (913 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m913.3/913.3 kB\u001b[0m \u001b[31m29.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hCollecting wasabi<1.2.0,>=0.9.1 (from spacy>=2.0.9->benepar)\n",
      "  Downloading wasabi-1.1.1-py3-none-any.whl (27 kB)\n",
      "Collecting srsly<3.0.0,>=2.4.3 (from spacy>=2.0.9->benepar)\n",
      "  Downloading srsly-2.4.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (492 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m492.2/492.2 kB\u001b[0m \u001b[31m28.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hCollecting catalogue<2.1.0,>=2.0.6 (from spacy>=2.0.9->benepar)\n",
      "  Downloading catalogue-2.0.8-py3-none-any.whl (17 kB)\n",
      "Collecting typer<0.8.0,>=0.3.0 (from spacy>=2.0.9->benepar)\n",
      "  Downloading typer-0.7.0-py3-none-any.whl (38 kB)\n",
      "Collecting pathy>=0.10.0 (from spacy>=2.0.9->benepar)\n",
      "  Downloading pathy-0.10.1-py3-none-any.whl (48 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m48.9/48.9 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hCollecting smart-open<7.0.0,>=5.2.1 (from spacy>=2.0.9->benepar)\n",
      "  Downloading smart_open-6.3.0-py3-none-any.whl (56 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.8/56.8 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: numpy>=1.15.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy>=2.0.9->benepar) (1.24.3)\n",
      "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy>=2.0.9->benepar) (2.30.0)\n",
      "Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy>=2.0.9->benepar) (1.10.7)\n",
      "Requirement already satisfied: jinja2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy>=2.0.9->benepar) (3.1.2)\n",
      "Requirement already satisfied: setuptools in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy>=2.0.9->benepar) (66.0.0)\n",
      "Requirement already satisfied: packaging>=20.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy>=2.0.9->benepar) (23.1)\n",
      "Collecting langcodes<4.0.0,>=3.2.0 (from spacy>=2.0.9->benepar)\n",
      "  Downloading langcodes-3.3.0-py3-none-any.whl (181 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.6/181.6 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: filelock in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (3.12.0)\n",
      "Requirement already satisfied: typing-extensions in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (4.5.0)\n",
      "Requirement already satisfied: sympy in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (1.11.1)\n",
      "Requirement already satisfied: networkx in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (3.1)\n",
      "Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.7.99 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (11.7.99)\n",
      "Requirement already satisfied: nvidia-cuda-runtime-cu11==11.7.99 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (11.7.99)\n",
      "Requirement already satisfied: nvidia-cuda-cupti-cu11==11.7.101 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (11.7.101)\n",
      "Requirement already satisfied: nvidia-cudnn-cu11==8.5.0.96 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (8.5.0.96)\n",
      "Requirement already satisfied: nvidia-cublas-cu11==11.10.3.66 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (11.10.3.66)\n",
      "Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (10.9.0.58)\n",
      "Requirement already satisfied: nvidia-curand-cu11==10.2.10.91 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (10.2.10.91)\n",
      "Requirement already satisfied: nvidia-cusolver-cu11==11.4.0.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (11.4.0.1)\n",
      "Requirement already satisfied: nvidia-cusparse-cu11==11.7.4.91 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (11.7.4.91)\n",
      "Requirement already satisfied: nvidia-nccl-cu11==2.14.3 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (2.14.3)\n",
      "Requirement already satisfied: nvidia-nvtx-cu11==11.7.91 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (11.7.91)\n",
      "Requirement already satisfied: triton==2.0.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from torch>=1.6.0->benepar) (2.0.0)\n",
      "Requirement already satisfied: wheel in /anaconda/envs/llava_med/lib/python3.10/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch>=1.6.0->benepar) (0.38.4)\n",
      "Requirement already satisfied: cmake in /anaconda/envs/llava_med/lib/python3.10/site-packages (from triton==2.0.0->torch>=1.6.0->benepar) (3.26.3)\n",
      "Requirement already satisfied: lit in /anaconda/envs/llava_med/lib/python3.10/site-packages (from triton==2.0.0->torch>=1.6.0->benepar) (16.0.3)\n",
      "Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from transformers[tokenizers,torch]>=4.2.2->benepar) (0.14.1)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from transformers[tokenizers,torch]>=4.2.2->benepar) (6.0)\n",
      "Requirement already satisfied: fsspec in /anaconda/envs/llava_med/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.11.0->transformers[tokenizers,torch]>=4.2.2->benepar) (2023.4.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy>=2.0.9->benepar) (3.1.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy>=2.0.9->benepar) (3.4)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy>=2.0.9->benepar) (1.26.15)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy>=2.0.9->benepar) (2022.12.7)\n",
      "Collecting blis<0.8.0,>=0.7.8 (from thinc<8.2.0,>=8.1.8->spacy>=2.0.9->benepar)\n",
      "  Downloading blis-0.7.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.2 MB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.2/10.2 MB\u001b[0m \u001b[31m65.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hCollecting confection<1.0.0,>=0.0.1 (from thinc<8.2.0,>=8.1.8->spacy>=2.0.9->benepar)\n",
      "  Downloading confection-0.0.4-py3-none-any.whl (32 kB)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from jinja2->spacy>=2.0.9->benepar) (2.1.2)\n",
      "Requirement already satisfied: mpmath>=0.19 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from sympy->torch>=1.6.0->benepar) (1.3.0)\n",
      "Building wheels for collected packages: benepar\n",
      "  Building wheel for benepar (setup.py) ... \u001b[?25ldone\n",
      "\u001b[?25h  Created wheel for benepar: filename=benepar-0.2.0-py3-none-any.whl size=37624 sha256=91a135f874d159bf5e85a61b59f9c6fce61cb82fc2e0d8a207976b951822d911\n",
      "  Stored in directory: /home/chunyl/.cache/pip/wheels/8d/4d/c1/a5af726368d5dbaaaa0b2dd36ed39b9da8cec46279a49bd6db\n",
      "Successfully built benepar\n",
      "Installing collected packages: cymem, wasabi, typer, spacy-loggers, spacy-legacy, smart-open, murmurhash, langcodes, catalogue, blis, srsly, preshed, pathy, confection, thinc, spacy, torch-struct, benepar\n",
      "Successfully installed benepar-0.2.0 blis-0.7.9 catalogue-2.0.8 confection-0.0.4 cymem-2.0.7 langcodes-3.3.0 murmurhash-1.0.9 pathy-0.10.1 preshed-3.0.8 smart-open-6.3.0 spacy-3.5.3 spacy-legacy-3.0.12 spacy-loggers-1.0.4 srsly-2.4.6 thinc-8.1.10 torch-struct-0.5 typer-0.7.0 wasabi-1.1.1\n",
      "Requirement already satisfied: spacy in /anaconda/envs/llava_med/lib/python3.10/site-packages (3.5.3)\n",
      "Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (3.0.12)\n",
      "Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (1.0.4)\n",
      "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (1.0.9)\n",
      "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (2.0.7)\n",
      "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (3.0.8)\n",
      "Requirement already satisfied: thinc<8.2.0,>=8.1.8 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (8.1.10)\n",
      "Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (1.1.1)\n",
      "Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (2.4.6)\n",
      "Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (2.0.8)\n",
      "Requirement already satisfied: typer<0.8.0,>=0.3.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (0.7.0)\n",
      "Requirement already satisfied: pathy>=0.10.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (0.10.1)\n",
      "Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (6.3.0)\n",
      "Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (4.65.0)\n",
      "Requirement already satisfied: numpy>=1.15.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (1.24.3)\n",
      "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (2.30.0)\n",
      "Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (1.10.7)\n",
      "Requirement already satisfied: jinja2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (3.1.2)\n",
      "Requirement already satisfied: setuptools in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (66.0.0)\n",
      "Requirement already satisfied: packaging>=20.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (23.1)\n",
      "Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy) (3.3.0)\n",
      "Requirement already satisfied: typing-extensions>=4.2.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy) (4.5.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy) (3.1.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy) (3.4)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy) (1.26.15)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy) (2022.12.7)\n",
      "Requirement already satisfied: blis<0.8.0,>=0.7.8 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from thinc<8.2.0,>=8.1.8->spacy) (0.7.9)\n",
      "Requirement already satisfied: confection<1.0.0,>=0.0.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from thinc<8.2.0,>=8.1.8->spacy) (0.0.4)\n",
      "Requirement already satisfied: click<9.0.0,>=7.1.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from typer<0.8.0,>=0.3.0->spacy) (8.1.3)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from jinja2->spacy) (2.1.2)\n"
     ]
    }
   ],
   "source": [
    "!pip install benepar\n",
    "!pip install spacy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting en-core-web-md==3.5.0\n",
      "  Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.5.0/en_core_web_md-3.5.0-py3-none-any.whl (42.8 MB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.8/42.8 MB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: spacy<3.6.0,>=3.5.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from en-core-web-md==3.5.0) (3.5.3)\n",
      "Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.0.12)\n",
      "Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.0.4)\n",
      "Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.0.9)\n",
      "Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.0.7)\n",
      "Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.0.8)\n",
      "Requirement already satisfied: thinc<8.2.0,>=8.1.8 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (8.1.10)\n",
      "Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.1.1)\n",
      "Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.4.6)\n",
      "Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.0.8)\n",
      "Requirement already satisfied: typer<0.8.0,>=0.3.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.7.0)\n",
      "Requirement already satisfied: pathy>=0.10.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.10.1)\n",
      "Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (6.3.0)\n",
      "Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (4.65.0)\n",
      "Requirement already satisfied: numpy>=1.15.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.24.3)\n",
      "Requirement already satisfied: requests<3.0.0,>=2.13.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.30.0)\n",
      "Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.10.7)\n",
      "Requirement already satisfied: jinja2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.1.2)\n",
      "Requirement already satisfied: setuptools in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (66.0.0)\n",
      "Requirement already satisfied: packaging>=20.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (23.1)\n",
      "Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.3.0)\n",
      "Requirement already satisfied: typing-extensions>=4.2.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (4.5.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.1.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.4)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.26.15)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2022.12.7)\n",
      "Requirement already satisfied: blis<0.8.0,>=0.7.8 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from thinc<8.2.0,>=8.1.8->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.7.9)\n",
      "Requirement already satisfied: confection<1.0.0,>=0.0.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from thinc<8.2.0,>=8.1.8->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.0.4)\n",
      "Requirement already satisfied: click<9.0.0,>=7.1.1 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from typer<0.8.0,>=0.3.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (8.1.3)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /anaconda/envs/llava_med/lib/python3.10/site-packages (from jinja2->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.1.2)\n",
      "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n",
      "You can now load the package via spacy.load('en_core_web_md')\n"
     ]
    }
   ],
   "source": [
    "import benepar, spacy\n",
    "!python -m spacy download en_core_web_md\n",
    "nlp = spacy.load('en_core_web_md')\n",
    "doc = nlp(\"The time for action is now. It's never too late to do something.\")\n",
    "\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('write', 'story')"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def find_root_verb_and_its_dobj(tree_root):\n",
    "    # first check if the current node and its children satisfy the condition\n",
    "    if tree_root.pos_ == \"VERB\":\n",
    "        for child in tree_root.children:\n",
    "            if child.dep_ == \"dobj\" and child.pos_ == \"NOUN\":\n",
    "                return tree_root.lemma_, child.lemma_\n",
    "        return tree_root.lemma_, None\n",
    "    # if not, check its children\n",
    "    for child in tree_root.children:\n",
    "        return find_root_verb_and_its_dobj(child)\n",
    "    # if no children satisfy the condition, return None\n",
    "    return None, None\n",
    "\n",
    "def find_root_verb_and_its_dobj_in_string(s):\n",
    "    doc = nlp(s)\n",
    "    first_sent = list(doc.sents)[0]\n",
    "    return find_root_verb_and_its_dobj(first_sent.root)\n",
    "\n",
    "find_root_verb_and_its_dobj_in_string(\"Write me a story about education.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "500000\n",
      "10712\n",
      "60088\n",
      "60017\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import json\n",
    "import tqdm\n",
    "import os\n",
    "\n",
    "dataset_name_list = [\"pretrain\", \"instruct_10K\", \"instruct_60K\", \"instruct_60K_intext\"]\n",
    "\n",
    "folder_path = \"../../data/\"\n",
    "file_path_list = [\n",
    "    \"2023-04-26_text_image_alignment.json\",     \n",
    "    \"2023-04-28_conv_finetune_processed.json\", \n",
    "    \"2023-05-10_finetune_postprocess_caption_cleaned\", \n",
    "    \"2023-05-10_finetune_postprocess_caption_in_text_cleaned\"\n",
    "]\n",
    "file_path_list = [os.path.join(folder_path, f) for f in file_path_list]\n",
    "generated_data_path = file_path_list\n",
    "\n",
    "dict_instruct_response = {}\n",
    "\n",
    "for i, ds_name in enumerate(dataset_name_list):\n",
    "\n",
    "    with open(generated_data_path[i], 'r') as fin:\n",
    "        line_dict = json.load(fin)\n",
    "\n",
    "    print(len(line_dict))\n",
    "    instruct_list, response_list = [], []\n",
    "    for line in line_dict:\n",
    "        try:\n",
    "            conversations = line['conversations']\n",
    "        except:\n",
    "            conversations = line['conversatons']\n",
    "\n",
    "        for c in conversations:\n",
    "            if c['from'] == \"human\":\n",
    "                if \"<image>\" in c['value']:\n",
    "                    for c1 in c['value'].split(\"\\n\"):\n",
    "                        if \"<image>\" not in c1:\n",
    "                            instruct_list.append(c1)\n",
    "                else:\n",
    "                    instruct_list.append(c['value'])\n",
    "            elif c['from'] == \"gpt\":\n",
    "                response_list.append(c['value'])\n",
    "\n",
    "    dict_instruct_response[ ds_name ] = {\"instruct\": instruct_list, \"response\": response_list}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "pretrain: 500000 | 500000\n",
      "instruct_10K: 52805 | 52805\n",
      "instruct_60K: 171673 | 171673\n",
      "instruct_60K_intext: 173696 | 173696\n"
     ]
    }
   ],
   "source": [
    "for k, v in dict_instruct_response.items():\n",
    "    num_instruct, num_response = len(v['instruct']), len(v['response'])\n",
    "    print(f'{k}: {num_instruct} | {num_response}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def compute_verb_noun_paris(sequences, csv_file_name):\n",
    "    # print(sequences[:3])\n",
    "    sequences = set(sequences) # if you are interested in studying the instructions, please change the task key\n",
    "    print(f'# unique sequences {len(sequences)}')\n",
    "\n",
    "    raw_phrases = []\n",
    "    for seq in tqdm.tqdm(sequences):\n",
    "        try:\n",
    "            verb, noun = find_root_verb_and_its_dobj_in_string(seq)\n",
    "            raw_phrases.append({\n",
    "                \"verb\": verb,\n",
    "                \"noun\": noun,\n",
    "                \"seq\": seq\n",
    "            })\n",
    "        except Exception as e:\n",
    "            print(e)\n",
    "            print(seq)\n",
    "    print(f'# raw_phrases {len(raw_phrases)}')\n",
    "    raw_phrases = pd.DataFrame(raw_phrases)\n",
    "    raw_phrases.to_csv(csv_file_name)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "pretrain: 500000 | 500000\n",
      "# unique sequences 27\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 27/27 [00:00<00:00, 240.38it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 27\n",
      "# unique sequences 99748\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  0%|          | 0/99748 [00:00<?, ?it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "list index out of range\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 99748/99748 [18:59<00:00, 87.52it/s] \n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 99747\n",
      "instruct_10K: 52805 | 52805\n",
      "# unique sequences 19117\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 19117/19117 [01:21<00:00, 234.93it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 19117\n",
      "# unique sequences 47006\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 47006/47006 [05:27<00:00, 143.41it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 47006\n",
      "instruct_60K: 171673 | 171673\n",
      "# unique sequences 48401\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 48401/48401 [03:06<00:00, 258.84it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 48401\n",
      "# unique sequences 94892\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 94892/94892 [12:17<00:00, 128.64it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 94892\n",
      "instruct_60K_intext: 173696 | 173696\n",
      "# unique sequences 51578\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 51578/51578 [03:23<00:00, 253.53it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 51578\n",
      "# unique sequences 95344\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 95344/95344 [11:49<00:00, 134.43it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# raw_phrases 95344\n"
     ]
    }
   ],
   "source": [
    "import random\n",
    "\n",
    "num_select = 100000\n",
    "for k, v in dict_instruct_response.items():\n",
    "    num_instruct, num_response = len(v['instruct']), len(v['response'])\n",
    "    print(f'{k}: {num_instruct} | {num_response}')\n",
    "    \n",
    "    output_csv_folder_path = os.path.join(folder_path, 'csv')\n",
    "\n",
    "    if num_instruct > num_select:\n",
    "        instruct = random.sample(v['instruct'], num_select)\n",
    "        response = random.sample(v['response'], num_select)\n",
    "    else:\n",
    "        instruct = v['instruct']\n",
    "        response = v['response']\n",
    "\n",
    "    compute_verb_noun_paris(instruct, f'{output_csv_folder_path}/{k}_instruction_verb_noun.csv') \n",
    "    compute_verb_noun_paris(response, f'{output_csv_folder_path}/{k}_response_verb_noun.csv') \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "import plotly.graph_objects as go\n",
    "import plotly.express as px\n",
    "\n",
    "folder_path = \"../../data/\"\n",
    "\n",
    "def visualize_verb_noun_paris(file_name, count_thredhold=10):\n",
    "    raw_phrases = pd.read_csv(f'{file_name}.csv')\n",
    "    raw_phrases = pd.DataFrame(raw_phrases)\n",
    "    phrases = pd.DataFrame(raw_phrases).dropna()\n",
    "    count_list = phrases[[\"verb\", \"noun\"]].groupby([\"verb\", \"noun\"]).size().sort_values(ascending=False)\n",
    "    print(len(count_list))\n",
    "\n",
    "    top_verbs = phrases[[\"verb\"]].groupby([\"verb\"]).size().nlargest(20).reset_index()\n",
    "\n",
    "    df = phrases[phrases[\"verb\"].isin(top_verbs[\"verb\"].tolist())]\n",
    "    # df = df[~df[\"noun\"].isin([\"I\", \"what\"])]\n",
    "    # df = phrases\n",
    "    # df[~df[\"verb\"].isin(top_verbs[\"verb\"].tolist())][\"verb\"] = \"other\"\n",
    "    # df[~df[\"verb\"].isin(top_verbs[\"verb\"].tolist())][\"noun\"] = \"other\"\n",
    "    df = df.groupby([\"verb\", \"noun\"]).size().reset_index().rename(columns={0: \"count\"}).sort_values(by=[\"count\"], ascending=False)\n",
    "    # df = df[df[\"count\"] > 10]\n",
    "    df = df.groupby(\"verb\").apply(lambda x: x.sort_values(\"count\", ascending=False).head(4)).reset_index(drop=True)\n",
    "    print(df)\n",
    "\n",
    "    # df[\"blank\"] = \"ROOT\"\n",
    "    # df = phrases.groupby([\"verb\", \"noun\"]).size().sort_values(ascending=False).head(5).reset_index().rename(columns={0: \"count\"})\n",
    "\n",
    "    df = df[df[\"count\"] > count_thredhold]\n",
    "    fig = px.sunburst(df, path=['verb', 'noun'], values='count')\n",
    "    # fig.update_layout(uniformtext=dict(minsize=10, mode='hide'))\n",
    "    fig.update_layout(\n",
    "        margin=dict(l=0, r=0, t=0, b=0),\n",
    "        font_family=\"Times New Roman\",\n",
    "    )\n",
    "    # fig.show()\n",
    "    output_html_folder_path = os.path.join(folder_path, 'output')\n",
    "    file_name = file_name.split(\"/\")[-1].split(\".\")[0]\n",
    "    html_file_path = f\"{output_html_folder_path}/{file_name}_{count_thredhold}.html\"\n",
    "    print(html_file_path)\n",
    "    fig.write_html(html_file_path)\n",
    "    # fig.savefig(\"output/verb_noun.pdf\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "22\n",
      "            verb            noun  count\n",
      "0        analyze           image      1\n",
      "1          break         element      1\n",
      "2   characterize           image      1\n",
      "3        clarify         content      1\n",
      "4         create       narrative      1\n",
      "5       describe           image      2\n",
      "6        examine           image      1\n",
      "7        explain          aspect      1\n",
      "8           give     explanation      2\n",
      "9     illustrate           image      1\n",
      "10         offer     explanation      1\n",
      "11         offer        analysis      1\n",
      "12       portray           image      1\n",
      "13       present     description      1\n",
      "14       provide     description      2\n",
      "15         relay         account      1\n",
      "16        render         summary      1\n",
      "17         share         rundown      1\n",
      "18         share  interpretation      1\n",
      "19     summarize         content      1\n",
      "20         write       depiction      1\n",
      "21         write         summary      1\n",
      "../../data/output/pretrain_instruction_verb_noun_30.html\n",
      "8626\n",
      "        verb           noun  count\n",
      "0     affect     expression     12\n",
      "1     affect       activity      8\n",
      "2     affect  proliferation      6\n",
      "3     affect        ability      5\n",
      "4      alter     expression     14\n",
      "..       ...            ...    ...\n",
      "75  suppress     activation      6\n",
      "76       use         method      6\n",
      "77       use      algorithm      4\n",
      "78       use       distance      3\n",
      "79       use          model      3\n",
      "\n",
      "[80 rows x 3 columns]\n",
      "../../data/output/pretrain_response_verb_noun_30.html\n",
      "1031\n",
      "       verb        noun  count\n",
      "0    affect   structure     18\n",
      "1    affect  appearance     17\n",
      "2    affect     patient      6\n",
      "3    affect  visibility      5\n",
      "4   compare         sub      1\n",
      "..      ...         ...    ...\n",
      "74    stain       image      2\n",
      "75     tell       value      3\n",
      "76     tell  percentage      3\n",
      "77     tell      number      2\n",
      "78     tell        size      2\n",
      "\n",
      "[79 rows x 3 columns]\n",
      "../../data/output/instruct_10K_instruction_verb_noun_30.html\n",
      "2889\n",
      "       verb       noun  count\n",
      "0    appear       area     54\n",
      "1    appear  structure     11\n",
      "2    appear     region      8\n",
      "3    appear    opacity      7\n",
      "4   contain      image     73\n",
      "..      ...        ...    ...\n",
      "72     show       scan    379\n",
      "73    stain        sub     14\n",
      "74    stain      image     14\n",
      "75    stain    section     10\n",
      "76    stain     tissue      2\n",
      "\n",
      "[77 rows x 3 columns]\n",
      "../../data/output/instruct_10K_response_verb_noun_30.html\n",
      "936\n",
      "       verb       noun  count\n",
      "0    affect       lung      8\n",
      "1    affect  structure      6\n",
      "2    affect      image      4\n",
      "3    affect    patient      4\n",
      "4     cause     lesion      4\n",
      "..      ...        ...    ...\n",
      "75     tell   location      2\n",
      "76  undergo       kind      4\n",
      "77  undergo  procedure      3\n",
      "78  undergo       type      2\n",
      "79  undergo    imaging      1\n",
      "\n",
      "[80 rows x 3 columns]\n",
      "../../data/output/instruct_60K_instruction_verb_noun_30.html\n",
      "5615\n",
      "       verb          noun  count\n",
      "0     cause        effect     15\n",
      "1     cause   compression     13\n",
      "2     cause         shift      9\n",
      "3     cause       symptom      7\n",
      "4   compare         group     41\n",
      "..      ...           ...    ...\n",
      "73  undergo  radiosurgery      6\n",
      "74      use   hematoxylin     86\n",
      "75      use      staining     56\n",
      "76      use         stain     55\n",
      "77      use      sequence     51\n",
      "\n",
      "[78 rows x 3 columns]\n",
      "../../data/output/instruct_60K_response_verb_noun_30.html\n",
      "894\n",
      "       verb         noun  count\n",
      "0    affect         lung      6\n",
      "1    affect    structure      4\n",
      "2    affect       number      4\n",
      "3    affect      patient      3\n",
      "4     cause  compression      3\n",
      "..      ...          ...    ...\n",
      "75  undergo            x      1\n",
      "76      use         type      2\n",
      "77      use     nomogram      2\n",
      "78      use         kind      2\n",
      "79      use        assay      1\n",
      "\n",
      "[80 rows x 3 columns]\n",
      "../../data/output/instruct_60K_intext_instruction_verb_noun_30.html\n",
      "6515\n",
      "       verb          noun  count\n",
      "0     cause   compression     18\n",
      "1     cause        effect     18\n",
      "2     cause  displacement     14\n",
      "3     cause         shift      8\n",
      "4   compare         score     33\n",
      "..      ...           ...    ...\n",
      "72  undergo  chemotherapy      6\n",
      "73      use   hematoxylin    101\n",
      "74      use         stain     70\n",
      "75      use      staining     55\n",
      "76      use       imaging     49\n",
      "\n",
      "[77 rows x 3 columns]\n",
      "../../data/output/instruct_60K_intext_response_verb_noun_30.html\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Bad pipe message: %s [b\"K\\xc6\\x1b\\xda\\xfd\\x1a\\x16[s7\\xbfz%\\x11:\\x0f\\xc2%\\x00\\x00|\\xc0,\\xc00\\x00\\xa3\\x00\\x9f\\xcc\\xa9\\xcc\\xa8\\xcc\\xaa\\xc0\\xaf\\xc0\\xad\\xc0\\xa3\\xc0\\x9f\\xc0]\\xc0a\\xc0W\\xc0S\\xc0+\\xc0/\\x00\\xa2\\x00\\x9e\\xc0\\xae\\xc0\\xac\\xc0\\xa2\\xc0\\x9e\\xc0\\\\\\xc0`\\xc0V\\xc0R\\xc0$\\xc0(\\x00k\\x00j\\xc0#\\xc0'\\x00g\\x00@\\xc0\\n\\xc0\\x14\\x009\\x008\\xc0\\t\\xc0\\x13\\x003\\x002\\x00\\x9d\\xc0\\xa1\\xc0\\x9d\\xc0Q\\x00\\x9c\\xc0\\xa0\\xc0\\x9c\\xc0P\\x00=\\x00<\\x005\\x00/\"]\n",
      "Bad pipe message: %s [b'\\x95\\x8a`\\xb1\\xd9]\\x93\\xcd\\xbc9aa\\x03K\\xf4\\xf7\\xa5\\xc7']\n",
      "Bad pipe message: %s [b'\\xa4f\\xeb\\x91\\x87\\x02\\x17$\\x85q^\\x82\\x86\\x94\\x9c\\xa7tq\\x00\\x00\\xa2\\xc0\\x14\\xc0\\n\\x009\\x008\\x007\\x006\\x00\\x88\\x00\\x87\\x00\\x86\\x00\\x85\\xc0\\x19\\x00:\\x00\\x89\\xc0\\x0f\\xc0\\x05\\x005\\x00\\x84\\xc0\\x13\\xc0\\t\\x003\\x002\\x001\\x000\\x00\\x9a\\x00\\x99\\x00\\x98\\x00\\x97\\x00E\\x00D\\x00C\\x00B\\xc0\\x18\\x004\\x00\\x9b\\x00F\\xc0\\x0e\\xc0\\x04\\x00/\\x00\\x96\\x00A\\x00\\x07\\xc0\\x11\\xc0\\x07\\xc0\\x16\\x00\\x18\\xc0\\x0c\\xc0\\x02\\x00\\x05\\x00\\x04\\xc0\\x12\\xc0\\x08\\x00\\x16\\x00', b'\\x10\\x00\\r\\xc0\\x17\\x00\\x1b\\xc0\\r\\xc0\\x03\\x00\\n\\x00\\x15\\x00\\x12\\x00']\n",
      "Bad pipe message: %s [b'\\x0c\\x00\\x1a\\x00\\t\\x00\\x14\\x00\\x11\\x00\\x19\\x00\\x08\\x00']\n",
      "Bad pipe message: %s [b'\\x17\\x00\\x03\\xc0\\x10']\n",
      "Bad pipe message: %s [b'\\x01\\xdd>\\x9e\\xb7\\x96[\\xc3\\x15\\xd9\\xe8M\\xe5\\xa14\\xaa\\x0e!\\x00\\x00\\xa2\\xc0\\x14\\xc0\\n\\x009\\x008\\x007\\x006\\x00\\x88\\x00\\x87\\x00\\x86\\x00\\x85\\xc0\\x19\\x00:\\x00\\x89\\xc0\\x0f\\xc0\\x05\\x005\\x00\\x84\\xc0\\x13\\xc0\\t\\x003\\x002\\x001\\x000\\x00\\x9a\\x00\\x99\\x00\\x98\\x00\\x97\\x00E\\x00D\\x00C\\x00B\\xc0\\x18\\x004\\x00\\x9b\\x00F\\xc0\\x0e\\xc0\\x04\\x00/\\x00\\x96\\x00A\\x00\\x07\\xc0\\x11\\xc0\\x07\\xc0\\x16\\x00\\x18\\xc0\\x0c\\xc0\\x02\\x00\\x05\\x00\\x04\\xc0\\x12\\xc0\\x08\\x00\\x16\\x00\\x13\\x00\\x10\\x00\\r\\xc0\\x17\\x00\\x1b\\xc0\\r\\xc0\\x03\\x00\\n\\x00\\x15\\x00\\x12\\x00\\x0f\\x00\\x0c\\x00\\x1a\\x00\\t\\x00\\x14\\x00\\x11\\x00']\n",
      "Bad pipe message: %s [b'\\x08\\x00\\x06\\x00\\x17\\x00\\x03\\xc0\\x10\\xc0\\x06\\xc0\\x15\\xc0\\x0b\\xc0\\x01\\x00\\x02\\x00\\x01\\x00\\xff\\x02']\n",
      "Bad pipe message: %s [b'']\n",
      "Bad pipe message: %s [b'\\xba\\xf6.\\xe1\\xd4\\x15!\\xf2\\xc4jJ\\xde\\x11\\xd1^>X\\xbe\\x00\\x00>']\n",
      "Bad pipe message: %s [b'J/\\xc1\\x98\\xd3\\xd3\\xe2\\xa9\\xe9\\x91#3\\x96\\xe1\\xd6']\n",
      "Bad pipe message: %s [b'\\xb1\\x00\\x00\\xa2\\xc0\\x14\\xc0\\n\\x009\\x008\\x007\\x006\\x00\\x88\\x00\\x87\\x00\\x86\\x00\\x85\\xc0\\x19\\x00:\\x00\\x89\\xc0\\x0f\\xc0\\x05\\x005\\x00\\x84\\xc0\\x13\\xc0\\t\\x003\\x002\\x001\\x000\\x00\\x9a\\x00\\x99\\x00\\x98\\x00\\x97\\x00E\\x00D\\x00C\\x00B\\xc0\\x18\\x004\\x00\\x9b\\x00F\\xc0\\x0e\\xc0\\x04\\x00/\\x00\\x96\\x00A\\x00\\x07\\xc0\\x11\\xc0\\x07\\xc0\\x16\\x00\\x18\\xc0\\x0c\\xc0\\x02\\x00\\x05\\x00\\x04\\xc0\\x12\\xc0\\x08\\x00\\x16\\x00\\x13\\x00\\x10\\x00\\r\\xc0\\x17\\x00\\x1b\\xc0\\r\\xc0\\x03\\x00\\n\\x00\\x15\\x00\\x12\\x00\\x0f\\x00\\x0c\\x00\\x1a\\x00\\t\\x00\\x14\\x00\\x11\\x00\\x19\\x00\\x08\\x00', b'\\x17\\x00\\x03\\xc0\\x10']\n",
      "Bad pipe message: %s [b\"\\x1b\\xc2(\\xbf\\xf0\\x126\\x88\\xd1n\\x1c\\xe6\\xe4d\\xe1\\x80\\x1cw\\x00\\x00\\xf4\\xc00\\xc0,\\xc0(\\xc0$\\xc0\\x14\\xc0\\n\\x00\\xa5\\x00\\xa3\\x00\\xa1\\x00\\x9f\\x00k\\x00j\\x00i\\x00h\\x009\\x008\\x007\\x006\\x00\\x88\\x00\\x87\\x00\\x86\\x00\\x85\\xc0\\x19\\x00\\xa7\\x00m\\x00:\\x00\\x89\\xc02\\xc0.\\xc0*\\xc0&\\xc0\\x0f\\xc0\\x05\\x00\\x9d\\x00=\\x005\\x00\\x84\\xc0/\\xc0+\\xc0'\\xc0#\\xc0\\x13\\xc0\\t\\x00\\xa4\\x00\\xa2\\x00\\xa0\\x00\\x9e\\x00g\\x00@\\x00?\\x00>\\x003\\x002\\x001\\x000\\x00\\x9a\\x00\\x99\\x00\\x98\\x00\\x97\\x00E\\x00D\\x00C\\x00B\\xc0\\x18\\x00\\xa6\\x00l\\x004\\x00\\x9b\\x00F\\xc01\\xc0-\\xc0)\\xc0%\\xc0\\x0e\\xc0\\x04\\x00\\x9c\\x00<\\x00/\\x00\\x96\\x00A\\x00\\x07\\xc0\\x11\\xc0\\x07\\xc0\\x16\\x00\\x18\\xc0\\x0c\\xc0\\x02\\x00\\x05\\x00\\x04\\xc0\"]\n",
      "Bad pipe message: %s [b'\\x08\\x00\\x16\\x00\\x13\\x00\\x10\\x00\\r\\xc0\\x17\\x00\\x1b\\xc0\\r\\xc0\\x03']\n"
     ]
    }
   ],
   "source": [
    "c_list = [30] # [0,10,20]\n",
    "for k, v in dict_instruct_response.items():\n",
    "    output_csv_folder_path = os.path.join(folder_path, 'csv')\n",
    "    for c in c_list:\n",
    "        visualize_verb_noun_paris(f'{output_csv_folder_path}/{k}_instruction_verb_noun', c)   \n",
    "        visualize_verb_noun_paris(f'{output_csv_folder_path}/{k}_response_verb_noun', c)  \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llava_med",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}