[4fa73e]: / tensorflow / preprocess / preprocess.py

Download this file

335 lines (289 with data), 14.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
import glob
import nibabel as nib
import numpy as np
import SimpleITK as sitk
import shutil
from nipype.interfaces.ants import N4BiasFieldCorrection
from sklearn.feature_extraction.image import extract_patches as sk_extract_patches
from sklearn.utils import shuffle
import tensorflow as tf
import scipy.misc
#import pdb
F = tf.app.flags.FLAGS
seed = 7
np.random.seed(seed)
all_modalities={'T1','T2'}
def get_filename(set_name, case_idx, input_name, loc):
pattern = '{0}/{1}/{3}/subject-{2}-{3}.nii'
return pattern.format(loc, set_name, case_idx, input_name)
def get_set_name(case_idx):
return 'Training' if case_idx < 11 else 'Testing'
def read_data(case_idx, input_name, loc):
set_name = get_set_name(case_idx)
image_path = get_filename(set_name, case_idx, input_name, loc)
print(image_path)
return nib.load(image_path)
def read_vol(case_idx, input_name, dir):
image_data = read_data(case_idx, input_name, dir)
return image_data.get_data()
def correct_bias(in_file, out_file):
correct = N4BiasFieldCorrection()
correct.inputs.input_image = in_file
correct.inputs.output_image = out_file
done = correct.run()
return done.outputs.output_image
def normalise(case_idx, input_name, in_dir, out_dir,copy=False):
set_name = get_set_name(case_idx)
image_in_path = get_filename(set_name, case_idx, input_name, in_dir)
image_out_path = get_filename(set_name, case_idx, input_name, out_dir)
if copy:
shutil.copy(image_in_path, image_out_path)
else:
correct_bias(image_in_path, image_out_path)
print(image_in_path + " done.")
"""
To extract patches from a 3D image
"""
def extract_patches(volume, patch_shape, extraction_step,datype='float32'):
patch_h, patch_w, patch_d = patch_shape[0], patch_shape[1], patch_shape[2]
stride_h, stride_w, stride_d = extraction_step[0], extraction_step[1], extraction_step[2]
img_h, img_w, img_d = volume.shape[0],volume.shape[1],volume.shape[2]
N_patches_h = (img_h-patch_h)//stride_h+1
N_patches_w = (img_w-patch_w)//stride_w+1
N_patches_d = (img_d-patch_d)//stride_d+1
N_patches_img = N_patches_h * N_patches_w * N_patches_d
raw_patch_martrix = np.zeros((N_patches_img,patch_h,patch_w,patch_d),dtype=datype)
k=0
#iterator over all the patches
for h in range((img_h-patch_h)//stride_h+1):
for w in range((img_w-patch_w)//stride_w+1):
for d in range((img_d-patch_d)//stride_d+1):
raw_patch_martrix[k]=volume[h*stride_h:(h*stride_h)+patch_h,\
w*stride_w:(w*stride_w)+patch_w,\
d*stride_d:(d*stride_d)+patch_d]
k+=1
assert(k==N_patches_img)
return raw_patch_martrix
"""
To extract labeled patches from array of 3D labeled images
"""
def get_patches_lab(T1_vols, T2_vols, label_vols, extraction_step,
patch_shape,validating,testing,num_images_training):
patch_shape_1d=patch_shape[0]
# Extract patches from input volumes and ground truth
x = np.zeros((0, patch_shape_1d, patch_shape_1d, patch_shape_1d, 2),dtype="float32")
y = np.zeros((0, patch_shape_1d, patch_shape_1d, patch_shape_1d),dtype="uint8")
for idx in range(len(T1_vols)) :
y_length = len(y)
if testing:
print(("Extracting Patches from Image %2d ....")%(num_images_training+idx+2))
elif validating:
print(("Extracting Patches from Image %2d ....")%(num_images_training+idx+1))
else:
print(("Extracting Patches from Image %2d ....")%(1+idx))
label_patches = extract_patches(label_vols[idx], patch_shape, extraction_step,
datype="uint8")
# Select only those who are important for processing
if testing or validating:
valid_idxs = np.where(np.sum(label_patches, axis=(1, 2, 3)) != -1)
else:
valid_idxs = np.where(np.count_nonzero(label_patches, axis=(1, 2, 3)) > 6000)
# Filtering extracted patches
label_patches = label_patches[valid_idxs]
x = np.vstack((x, np.zeros((len(label_patches), patch_shape_1d,
patch_shape_1d, patch_shape_1d, 2),dtype="float32")))
y = np.vstack((y, np.zeros((len(label_patches), patch_shape_1d,
patch_shape_1d, patch_shape_1d),dtype="uint8")))
y[y_length:, :, :, :] = label_patches
# Sampling strategy: reject samples which labels are mostly 0 and have less than 6000 nonzero elements
T1_train = extract_patches(T1_vols[idx], patch_shape, extraction_step,datype="float32")
x[y_length:, :, :, :, 0] = T1_train[valid_idxs]
# Sampling strategy: reject samples which labels are mostly 0 and have less than 6000 nonzero elements
T2_train = extract_patches(T2_vols[idx], patch_shape, extraction_step,datype="float32")
x[y_length:, :, :, :, 1] = T2_train[valid_idxs]
return x, y
"""
To preprocess the labeled training data
"""
def preprocess_dynamic_lab(dir,num_classes, extraction_step,patch_shape,num_images_training=2,
validating=False,testing=False,num_images_testing=7):
if testing:
print("Testing")
r1=num_images_training+2
r2=num_images_training+num_images_testing+2
c=num_images_training+1
T1_vols = np.empty((num_images_testing, 144, 192, 256),dtype="float32")
T2_vols = np.empty((num_images_testing, 144, 192, 256),dtype="float32")
label_vols = np.empty((num_images_testing, 144, 192, 256),dtype="uint8")
elif validating:
print("Validating")
r1=num_images_training+1
r2=num_images_training+2
c=num_images_training
T1_vols = np.empty((1, 144, 192, 256),dtype="float32")
T2_vols = np.empty((1, 144, 192, 256),dtype="float32")
label_vols = np.empty((1, 144, 192, 256),dtype="uint8")
else:
print("Training")
r1=1
r2=num_images_training+1
c=0
T1_vols = np.empty((num_images_training, 144, 192, 256),dtype="float32")
T2_vols = np.empty((num_images_training, 144, 192, 256),dtype="float32")
label_vols = np.empty((num_images_training, 144, 192, 256),dtype="uint8")
for case_idx in range(r1, r2) :
print(case_idx)
T1_vols[(case_idx-c-1), :, :, :] = read_vol(case_idx, 'T1', dir)
T2_vols[(case_idx-c-1), :, :, :] = read_vol(case_idx, 'T2', dir)
label_vols[(case_idx-c-1), :, :, :] = read_vol(case_idx, 'label', dir)
T1_mean = T1_vols.mean()
T1_std = T1_vols.std()
T1_vols = (T1_vols - T1_mean) / T1_std
T2_mean = T2_vols.mean()
T2_std = T2_vols.std()
T2_vols = (T2_vols - T2_mean) / T2_std
for i in range(T1_vols.shape[0]):
T1_vols[i] = ((T1_vols[i] - np.min(T1_vols[i])) /
(np.max(T1_vols[i])-np.min(T1_vols[i])))*255
for i in range(T2_vols.shape[0]):
T2_vols[i] = ((T2_vols[i] - np.min(T2_vols[i])) /
(np.max(T2_vols[i])-np.min(T2_vols[i])))*255
T1_vols = T1_vols/127.5 -1.
T2_vols = T2_vols/127.5 -1.
x,y=get_patches_lab(T1_vols,T2_vols,label_vols,extraction_step,patch_shape,validating=validating,
testing=testing,num_images_training=num_images_training)
print("Total Extracted Labelled Patches Shape:",x.shape,y.shape)
if testing:
return x, label_vols
elif validating:
return x, y, label_vols
else:
return x, y
"""
To extract labeled patches from array of 3D ulabeled images
"""
def get_patches_unlab(T1_vols, T2_vols, extraction_step,patch_shape,dir):
patch_shape_1d=patch_shape[0]
# Extract patches from input volumes and ground truth
label_ref= np.empty((1, 144, 192, 256),dtype="uint8")
x = np.zeros((0, patch_shape_1d, patch_shape_1d, patch_shape_1d, 2))
label_ref = read_vol(1, 'label', dir)
for idx in range(len(T1_vols)) :
x_length = len(x)
print(("Processing the Image %2d ....")%(idx+11))
label_patches = extract_patches(label_ref, patch_shape, extraction_step)
# Select only those who are important for processing
# Sampling strategy: reject samples which labels are mostly 0 and have less than 6000 nonzero elements
valid_idxs = np.where(np.count_nonzero(label_patches, axis=(1, 2, 3)) > 6000)
label_patches = label_patches[valid_idxs]
x = np.vstack((x, np.zeros((len(label_patches), patch_shape_1d,
patch_shape_1d, patch_shape_1d, 2))))
T1_train = extract_patches(T1_vols[idx], patch_shape, extraction_step,datype="float32")
x[x_length:, :, :, :, 0] = T1_train[valid_idxs]
T2_train = extract_patches(T2_vols[idx], patch_shape, extraction_step,datype="float32")
x[x_length:, :, :, :, 1] = T2_train[valid_idxs]
return x
"""
To preprocess the unlabeled training data
"""
def preprocess_dynamic_unlab( dir,extraction_step,patch_shape,num_images_training_unlab):
T1_vols = np.empty((num_images_training_unlab, 144, 192, 256),dtype="float32")
T2_vols = np.empty((num_images_training_unlab, 144, 192, 256),dtype="float32")
for case_idx in range(11, 11+num_images_training_unlab) :
T1_vols[(case_idx - 11), :, :, :] = read_vol(case_idx, 'T1', dir)
T2_vols[(case_idx - 11), :, :, :] = read_vol(case_idx, 'T2', dir)
#print(read_vol(case_idx, 'T2', dir).shape)
T1_mean = T1_vols.mean()
T1_std = T1_vols.std()
T1_vols = (T1_vols - T1_mean) / T1_std
T2_mean = T2_vols.mean()
T2_std = T2_vols.std()
T2_vols = (T2_vols - T2_mean) / T2_std
for i in range(T1_vols.shape[0]):
T1_vols[i] = ((T1_vols[i] - np.min(T1_vols[i])) /
(np.max(T1_vols[i])-np.min(T1_vols[i])))*255
for i in range(T2_vols.shape[0]):
T2_vols[i] = ((T2_vols[i] - np.min(T2_vols[i])) /
(np.max(T2_vols[i])-np.min(T2_vols[i])))*255
T1_vols = T1_vols/127.5 -1.
T2_vols = T2_vols/127.5 -1.
x=get_patches_unlab(T1_vols, T2_vols, extraction_step, patch_shape,dir)
print("Total Extracted Unlabelled Patches Shape:",x.shape)
return x
def preprocess_static( org_dir, prepro_dir, dataset="labeled", overwrite=False):
if not os.path.exists(prepro_dir):
os.makedirs(prepro_dir)
for subject_folder in glob.glob(os.path.join(org_dir, "*", "*")):
if os.path.isdir(subject_folder):
subject = os.path.basename(subject_folder)
new_subject_folder = os.path.join(prepro_dir,
os.path.basename(os.path.dirname(subject_folder)),subject)
if not os.path.exists(new_subject_folder) or overwrite:
if not os.path.exists(new_subject_folder):
os.makedirs(new_subject_folder)
if(dataset=="labeled"):
for case_idx in range(1, 11) :
normalise(case_idx, 'T1',org_dir,prepro_dir)
normalise(case_idx, 'T2',org_dir,prepro_dir)
normalise(case_idx, 'label',org_dir,prepro_dir,
copy=True)
else:
for case_idx in range(11, 24) :
normalise(case_idx, 'T1',org_dir,prepro_dir)
normalise(case_idx, 'T2',org_dir,prepro_dir)
"""
dataset class for preparing training data of basic U-Net
"""
class dataset(object):
def __init__(self,num_classes, extraction_step, number_images_training, batch_size, patch_shape,data_directory):
# Extract labelled and unlabelled patches
self.batch_size=batch_size
self.data_lab, self.label = preprocess_dynamic_lab(
data_directory,num_classes,extraction_step,
patch_shape,number_images_training)
self.data_lab, self.label = shuffle(self.data_lab,
self.label, random_state=0)
print("Data_shape:",self.data_lab.shape)
print("Data lab max and min:",np.max(self.data_lab),np.min(self.data_lab))
print("Label unique:",np.unique(self.label))
def batch_train(self):
self.num_batches = len(self.data_lab) // self.batch_size
for i in range(self.num_batches):
yield self.data_lab[i*self.batch_size:(i+1)*self.batch_size],\
self.label[i*self.batch_size:(i+1)*self.batch_size]
"""
dataset_badGAN class for preparing data of our model
"""
class dataset_badGAN(object):
def __init__(self,num_classes, extraction_step, number_images_training, batch_size,
patch_shape, number_unlab_images_training,data_directory):
# Extract labelled and unlabelled patches,
self.batch_size=batch_size
self.data_lab, self.label = preprocess_dynamic_lab(
data_directory,num_classes,extraction_step,
patch_shape,number_images_training)
self.data_lab, self.label = shuffle(self.data_lab, self.label, random_state=0)
self.data_unlab = preprocess_dynamic_unlab(data_directory,extraction_step,
patch_shape, number_unlab_images_training)
self.data_unlab = shuffle(self.data_unlab, random_state=0)
# If training, repeat labelled data to make its size equal to unlabelled data
factor = len(self.data_unlab) // len(self.data_lab)
print("Factor for labeled images:",factor)
rem = len(self.data_unlab)%len(self.data_lab)
temp = self.data_lab[:rem]
self.data_lab = np.concatenate((np.repeat(self.data_lab, factor, axis=0), temp), axis=0)
temp = self.label[:rem]
self.label = np.concatenate((np.repeat(self.label, factor, axis=0), temp), axis=0)
assert(self.data_lab.shape == self.data_unlab.shape)
print("Data_shape:",self.data_lab.shape,self.data_unlab.shape)
print("Data lab max and min:",np.max(self.data_lab),np.min(self.data_lab))
print("Data unlab max and min:",np.max(self.data_unlab),np.min(self.data_unlab))
print("Label unique:",np.unique(self.label))
def batch_train(self):
self.num_batches = len(self.data_lab) // self.batch_size
for i in range(self.num_batches):
yield self.data_lab[i*self.batch_size:(i+1)*self.batch_size],\
self.data_unlab[i*self.batch_size:(i+1)*self.batch_size],\
self.label[i*self.batch_size:(i+1)*self.batch_size]
#preprocess_static( actual_data_directory, preprocesses_data_directory, overwrite=True)