[4fa73e]: / tensorflow / lib / operations.py

Download this file

164 lines (132 with data), 7.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import tensorflow as tf
F = tf.flags.FLAGS
def gaussian_nll(mu, log_sigma, noise):
NLL = tf.reduce_sum(log_sigma, 1) + \
tf.reduce_sum(((noise - mu)/(1e-8 + tf.exp(log_sigma)))**2,1)/2.
return tf.reduce_mean(NLL)
def conv3d(input_, output_dim,k_d=3, k_h=3, k_w=3,
s_d=1, s_h=1, s_w=1, stddev=0.05, name="conv3d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_d, k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv3d(input_, w, strides=[1, s_d, s_h, s_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim],
initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
return conv
def deconv3d(input_, output_shape,k_d=2, k_h=2, k_w=2,
s_d=2, s_h=2, s_w=2, stddev=0.05, name="deconv3d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_d, k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
deconv = tf.nn.conv3d_transpose(input_, w, output_shape=output_shape,
strides=[1, s_d, s_h, s_w, 1], padding="SAME")
biases = tf.get_variable('biases', [output_shape[-1]],
initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
return deconv
def relu(x, name="relu"):
return tf.nn.relu(x)
def lrelu(x, leak=0.2, name="lrelu"):
return tf.maximum(x, leak*x)
def max_pool3D(input_,k_d=2, k_h=2, k_w=2, s_d=2, s_h=2, s_w=2):
return tf.nn.max_pool3d(input_,[1, k_d, k_h, k_w, 1],strides=[1, s_d, s_h, s_w, 1] , padding='SAME')
def avg_pool3D(input_,k_d=2, k_h=2, k_w=2, s_d=2, s_h=2, s_w=2):
return tf.nn.avg_pool3d(input_,[1, k_d, k_h, k_w, 1],strides=[1, s_d, s_h, s_w, 1] , padding='SAME')
def linear(input_, output_size, scope=None, stddev=0.05, bias_start=0.0):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
return tf.matmul(input_, matrix) + bias
def instance_norm(x,phase=False,name="instance_norm"):
epsilon = 1e-9
mean, var = tf.nn.moments(x, [1, 2, 3], keep_dims=True)
return tf.div(tf.subtract(x, mean), tf.sqrt(tf.add(var, epsilon)))
class batch_norm(object):
def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x, train=True):
return tf.contrib.layers.batch_norm(x,
decay=self.momentum,
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=train,
scope=self.name)
def int_shape(x):
return list(map(int, x.get_shape()))
def get_var_maybe_avg(var_name, ema, **kwargs):
''' utility for retrieving polyak averaged params '''
v = tf.get_variable(var_name, **kwargs)
if ema is not None:
v = ema.average(v)
return v
def conv3d_WN(x, num_filters, filter_size=[3,3,3], stride=[1,1,1], pad='SAME', init_scale=1., name="conv_WN", init=False, ema=None, **kwargs):
''' convolutional layer '''
with tf.variable_scope(name):
V = get_var_maybe_avg('V', ema, shape=filter_size+[int(x.get_shape()[-1]),num_filters], dtype=tf.float32,
initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
g = get_var_maybe_avg('g', ema, shape=[num_filters], dtype=tf.float32,
initializer=tf.constant_initializer(1.), trainable=True)
b = get_var_maybe_avg('b', ema, shape=[num_filters], dtype=tf.float32,
initializer=tf.constant_initializer(0.), trainable=True)
# use weight normalization (Salimans & Kingma, 2016)
W = tf.reshape(g, [1, 1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2, 3])
# calculate convolutional layer output
x = tf.nn.bias_add(tf.nn.conv3d(x, W, [1] + stride + [1], pad), b)
if init: # normalize x
m_init, v_init = tf.nn.moments(x, [0,1,2,3])
scale_init = init_scale / tf.sqrt(v_init + 1e-10)
with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]):
x = tf.identity(x)
return x
def deconv3d_WN(x, num_filters, filter_size=[2,2,2], stride=[2,2,2], pad='SAME', init_scale=1., name="deconv_WN", init=False, ema=None, **kwargs):
''' transposed convolutional layer '''
xs = int_shape(x)
if pad=='SAME':
target_shape = [xs[0], xs[1]*stride[0], xs[2]*stride[1], xs[3]*stride[2], num_filters]
else:
target_shape = [xs[0], xs[1]*stride[0] + filter_size[0]-1, xs[2]*stride[1] + filter_size[1]-1,xs[3]*stride[2] + filter_size[2]-1, num_filters]
with tf.variable_scope(name):
V = get_var_maybe_avg('V', ema, shape=filter_size+[num_filters,int(x.get_shape()[-1])], dtype=tf.float32,
initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
g = get_var_maybe_avg('g', ema, shape=[num_filters], dtype=tf.float32,
initializer=tf.constant_initializer(1.), trainable=True)
b = get_var_maybe_avg('b', ema, shape=[num_filters], dtype=tf.float32,
initializer=tf.constant_initializer(0.), trainable=True)
# use weight normalization (Salimans & Kingma, 2016)
W = tf.reshape(g, [1, 1, 1, num_filters, 1]) * tf.nn.l2_normalize(V, [0, 1, 2, 4])
# calculate convolutional layer output
x = tf.nn.conv3d_transpose(x, W, target_shape, [1] + stride + [1], padding=pad)
x = tf.nn.bias_add(x, b)
if init: # normalize x
m_init, v_init = tf.nn.moments(x, [0,1,2,3])
scale_init = init_scale / tf.sqrt(v_init + 1e-10)
with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]):
x = tf.identity(x)
return x
def linear_WN(x, num_units, name="linear_WN", init_scale=1., init=False, ema=None, **kwargs):
''' fully connected layer '''
with tf.variable_scope(name):
V = get_var_maybe_avg('V', ema, shape=[int(x.get_shape()[1]),num_units], dtype=tf.float32,
initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
g = get_var_maybe_avg('g', ema, shape=[num_units], dtype=tf.float32,
initializer=tf.constant_initializer(1.), trainable=True)
b = get_var_maybe_avg('b', ema, shape=[num_units], dtype=tf.float32,
initializer=tf.constant_initializer(0.), trainable=True)
# use weight normalization (Salimans & Kingma, 2016)
x = tf.matmul(x, V)
scaler = g / tf.sqrt(tf.reduce_sum(tf.square(V), [0]))
x = tf.reshape(scaler, [1, num_units]) * x + tf.reshape(b, [1, num_units])
if init: # normalize x
m_init, v_init = tf.nn.moments(x, [0])
scale_init = init_scale/tf.sqrt(v_init + 1e-10)
with tf.control_dependencies([g.assign(g*scale_init), b.assign_add(-m_init*scale_init)]):
x = tf.identity(x)
return x