[4fa73e]: / tensorflow / experiments / unet3D / model_unet.py

Download this file

294 lines (226 with data), 11.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from __future__ import division
import os
import pickle
import tensorflow as tf
import numpy as np
from six.moves import xrange
from sklearn.metrics import f1_score
import sys
sys.path.insert(0, '../preprocess/')
sys.path.insert(0, '../lib/')
from operations import *
from utils import *
from preprocess import *
F = tf.app.flags.FLAGS
"""
Model class
"""
class UNET(object):
def __init__(self, sess, patch_shape, extraction_step):
self.sess = sess
self.patch_shape = patch_shape
self.extraction_step = extraction_step
self.d_bns = [batch_norm(name='u_bn{}'.format(i,)) for i in range(14)]
def network_dis(self, patch, reuse=False):
"""
Parameters:
* patch - input image for the network
* reuse - boolean variable to reuse weights
Returns:
* logits
* softmax of logits
* features extracted from encoding path
"""
with tf.variable_scope('U') as scope:
if reuse:
scope.reuse_variables()
h0 = lrelu(conv3d_WN(patch, 32, name='u_h0_conv'))
h1 = lrelu(conv3d_WN(h0, 32, name='u_h1_conv'))
p1 = avg_pool3D(h1)
h2 = lrelu(conv3d_WN(p1, 64, name='u_h2_conv'))
h3 = lrelu(conv3d_WN(h2, 64, name='u_h3_conv'))
p3 = avg_pool3D(h3)
h4 = lrelu(conv3d_WN(p3, 128, name='u_h4_conv'))
h5 = lrelu(conv3d_WN(h4, 128, name='u_h5_conv'))
p5 = avg_pool3D(h5)
h6 = lrelu(conv3d_WN(p5, 256, name='u_h6_conv'))
h7 = lrelu(conv3d_WN(h6, 256, name='u_h7_conv'))
up1 = deconv3d_WN(h7,256,name='u_up1_deconv')
up1 = tf.concat([h5,up1],4)
h8 = lrelu(conv3d_WN(up1, 128, name='u_h8_conv'))
h9 = lrelu(conv3d_WN(h8, 128, name='u_h9_conv'))
up2 = deconv3d_WN(h9,128,name='u_up2_deconv')
up2 = tf.concat([h3,up2],4)
h10 = lrelu(conv3d_WN(up2, 64, name='u_h10_conv'))
h11 = lrelu(conv3d_WN(h10, 64, name='u_h11_conv'))
up3 = deconv3d_WN(h11,64,name='u_up3_deconv')
up3 = tf.concat([h1,up3],4)
h12 = lrelu(conv3d_WN(up3, 32, name='u_h12_conv'))
h13 = lrelu(conv3d_WN(h12, 32, name='u_h13_conv'))
h14 = conv3d_WN(h13, F.num_classes,name='u_h14_conv')
return h14,tf.nn.softmax(h14)
"""
Network model
Parameters:
* image - input image for the network
* reuse - boolean variable to reuse weights
Returns: logits
"""
def network(self, patch, phase,pshape, reuse=False):
with tf.variable_scope('U') as scope:
if reuse:
scope.reuse_variables()
sh1, sh2, sh3 = int(pshape[0]/4),\
int(pshape[0]/2), int(pshape[0])
h0 = relu(self.d_bns[0](conv3d(patch, 32, name='u_h0_conv'),phase))
h1 = relu(self.d_bns[1](conv3d(h0, 32, name='u_h1_conv'),phase))
p1 = max_pool3D(h1)
h2 = relu(self.d_bns[2](conv3d(p1, 64, name='u_h2_conv'),phase))
h3 = relu(self.d_bns[3](conv3d(h2, 64, name='u_h3_conv'),phase))
p3 = max_pool3D(h3)
h4 = relu(self.d_bns[4](conv3d(p3, 128, name='u_h4_conv'),phase))
h5 = relu(self.d_bns[5](conv3d(h4, 128, name='u_h5_conv'),phase))
p5 = max_pool3D(h5)
h6 = relu(self.d_bns[6](conv3d(p5, 256, name='u_h6_conv'),phase))
h7 = relu(self.d_bns[7](conv3d(h6, 256, name='u_h7_conv'),phase))
up1 = deconv3d(h7,[F.batch_size,sh1,sh1,sh1,256],name='d_up1_deconv')
up1 = tf.concat([h5,up1],4)
h8 = relu(self.d_bns[8](conv3d(up1, 128, name='u_h8_conv'),phase))
h9 = relu(self.d_bns[9](conv3d(h8, 128, name='u_h9_conv'),phase))
up2 = deconv3d(h9,[F.batch_size,sh2,sh2,sh2,128],name='d_up2_deconv')
up2 = tf.concat([h3,up2],4)
h10 = relu(self.d_bns[10](conv3d(up2, 64, name='u_h10_conv'),phase))
h11 = relu(self.d_bns[11](conv3d(h10, 64, name='u_h11_conv'),phase))
up3 = deconv3d(h11,[F.batch_size,sh3,sh3,sh3,64],name='d_up3_deconv')
up3 = tf.concat([h1,up3],4)
h12 = relu(self.d_bns[12](conv3d(up3, 32, name='u_h12_conv'),phase))
h13 = relu(self.d_bns[13](conv3d(h12, 32, name='u_h13_conv'),phase))
h14 = conv3d(h13, F.num_classes, name='u_h14_conv')
return h14,tf.nn.softmax(h14)
"""
Defines the UNET model and losses
"""
def build_model(self):
self.patches_labeled = tf.placeholder(tf.float32, [F.batch_size, self.patch_shape[0],
self.patch_shape[1], self.patch_shape[2], F.num_mod], name='real_images_l')
self.labels = tf.placeholder(tf.uint8, [F.batch_size, self.patch_shape[0], self.patch_shape[1],
self.patch_shape[2]], name='image_labels')
self.labels_1hot = tf.one_hot(self.labels, depth=F.num_classes)
self.phase = tf.placeholder(tf.bool)
# Forward pass through network
# To use original 3D U-Net use ***network*** function and don't forget to change the testing file
#self._logits_labeled, self._probdist = self.network(self.patches_labeled, self.phase, self.patch_shape, reuse=False)
self._logits_labeled, self._probdist = self.network_dis(self.patches_labeled, reuse=False)
#Validation Output
self.Val_output = tf.argmax(self._probdist, axis=-1)
# Weighted ross entropy loss
# Weights of different class are: Background- 0.33, CSF- 1.5, GM- 0.83, WM- 1.33
class_weights = tf.constant([[0.33, 1.5, 0.83, 1.33]])
weights = tf.reduce_sum(class_weights * self.labels_1hot, axis=-1)
unweighted_losses = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self._logits_labeled, labels=self.labels_1hot)
weighted_losses = unweighted_losses * weights
self.u_loss = tf.reduce_mean(weighted_losses)
#define the trainable variables
t_vars = tf.trainable_variables()
self.u_vars = [var for var in t_vars if 'u_' in var.name]
self.saver = tf.train.Saver()
"""
Train function
Defines learning rates and optimizers.
Performs Network update and saves the losses
"""
def train(self):
data = dataset(num_classes=F.num_classes,extraction_step=self.extraction_step, number_images_training=
F.number_train_images,batch_size=F.batch_size, patch_shape=self.patch_shape,data_directory=F.data_directory)
global_step = tf.placeholder(tf.int32, [], name="global_step_epochs")
# Optimizer operation
_optim = tf.train.AdamOptimizer(F.learning_rate_, beta1=F.beta1).minimize(self.u_loss,
var_list=self.u_vars)
tf.global_variables_initializer().run()
# Load checkpoints if required
if F.load_chkpt:
try:
load_model(F.checkpoint_dir, self.sess, self.saver)
print("\n [*] Checkpoint loaded succesfully!")
except:
print("\n [!] Checkpoint loading failed!")
else:
print("\n [*] Checkpoint load not required.")
patches_val, labels_val_patch, labels_val = preprocess_dynamic_lab(F.data_directory,
F.num_classes,self.extraction_step,self.patch_shape,
F.number_train_images,validating=F.training,
testing=F.testing,num_images_testing=F.number_test_images)
predictions_val = np.zeros((patches_val.shape[0],self.patch_shape[0],self.patch_shape[1],
self.patch_shape[2]),dtype='uint8')
max_par=0.0
max_loss=100
for epoch in xrange(int(F.epoch)):
idx = 0
batch_iter_train = data.batch_train()
total_val_loss=0
total_train_loss=0
for patches_lab, labels in batch_iter_train:
# Network update
feed_dict = {self.patches_labeled:patches_lab,self.labels:labels,
self.phase:True, global_step: epoch}
_optim.run(feed_dict)
# Evaluate loss for plotting/printing purposes
feed_dict = {self.patches_labeled:patches_lab,self.labels:labels,
self.phase:True, global_step: epoch}
u_loss = self.u_loss.eval(feed_dict)
total_train_loss=total_train_loss+u_loss
idx += 1
print(("Epoch:[%2d] [%4d/%4d] Loss:%.2e \n")%(epoch, idx,data.num_batches,u_loss))
# Save model
save_model(F.checkpoint_dir, self.sess, self.saver)
# Validation runs every third epoch
if epoch%3==0:
avg_train_loss=total_train_loss/(idx*1.0)
print('\n\n')
total_batches = int(patches_val.shape[0]/F.batch_size)
print("Total number of Patches: ",patches_val.shape[0])
print("Total number of Batches: ",total_batches)
for batch in range(total_batches):
patches_feed = patches_val[batch*F.batch_size:(batch+1)*F.batch_size,:,:,:,:]
labels_feed = labels_val_patch[batch*F.batch_size:(batch+1)*F.batch_size,:,:,:]
feed_dict={self.patches_labeled:patches_feed,
self.labels:labels_feed, self.phase:False}
preds = self.Val_output.eval(feed_dict)
val_loss = self.u_loss.eval(feed_dict)
predictions_val[batch*F.batch_size:(batch+1)*F.batch_size,:,:,:]=preds
print(("Validated Patch:[%8d/%8d]")%(batch,total_batches))
total_val_loss=total_val_loss+val_loss
avg_val_loss=total_val_loss/(total_batches*1.0)
print("All validation patches Predicted")
print("Shape of predictions_val, min and max:",predictions_val.shape,np.min(predictions_val),
np.max(predictions_val))
val_image_pred = recompose3D_overlap(predictions_val,144, 192, 256, self.extraction_step[0],
self.extraction_step[1],self.extraction_step[2])
val_image_pred = val_image_pred.astype('uint8')
print("Shape of Predicted Output Groundtruth Images:",val_image_pred.shape,
np.unique(val_image_pred),
np.unique(labels_val),
np.mean(val_image_pred),np.mean(labels_val))
pred2d=np.reshape(val_image_pred,(val_image_pred.shape[0]*144*192*256))
lab2d=np.reshape(labels_val,(labels_val.shape[0]*144*192*256))
F1_score = f1_score(lab2d, pred2d,[0,1,2,3],average=None)
print("Validation Dice Coefficient.... ")
print("Background:",F1_score[0])
print("CSF:",F1_score[1])
print("GM:",F1_score[2])
print("WM:",F1_score[3])
# To save the best model based on validation
if(max_par<(F1_score[2]+F1_score[3])):
max_par=(F1_score[2]+F1_score[3])
save_model(F.best_checkpoint_dir, self.sess, self.saver)
print("Best checkpoint got updated from validation results.")
# To save losses for plotting
'''
print("Average Validation Loss:",avg_val_loss)
print("Average Training Loss",avg_train_loss)
with open('Val_loss.txt', 'a') as f:
f.write('%.2e \n' % avg_val_loss)
with open('Train_loss.txt', 'a') as f:
f.write('%.2e \n' % avg_train_loss)
'''
return