Download this file

168 lines (120 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import division
import os
import pickle
import tensorflow as tf
import numpy as np
from sklearn.metrics import f1_score
import sys
sys.path.insert(0, '../preprocess/')
sys.path.insert(0, '../lib/')
from operations import *
from utils import *
from preprocess import *
F = tf.app.flags.FLAGS
# Function to save predicted images as .nii.gz file in results folder
def save_image(direc,i,num):
img = nib.Nifti1Image(i, None)
imgname = 'outputimage_GANbasedunet_'+str(num)+'.nii.gz'
nib.save(img, os.path.join(direc,imgname))
# Same discriminator network as in model file
def trained_dis_network(patch, reuse=False):
"""
Parameters:
* patch - input image for the network
* reuse - boolean variable to reuse weights
Returns:
* softmax of logits
"""
with tf.variable_scope('D') as scope:
if reuse:
scope.reuse_variables()
h0 = lrelu(conv3d_WN(patch, 32, name='d_h0_conv'))
h1 = lrelu(conv3d_WN(h0, 32, name='d_h1_conv'))
p1 = avg_pool3D(h1)
h2 = lrelu(conv3d_WN(p1, 64, name='d_h2_conv'))
h3 = lrelu(conv3d_WN(h2, 64, name='d_h3_conv'))
p3 = avg_pool3D(h3)
h4 = lrelu(conv3d_WN(p3, 128, name='d_h4_conv'))
h5 = lrelu(conv3d_WN(h4, 128, name='d_h5_conv'))
p5 = avg_pool3D(h5)
h6 = lrelu(conv3d_WN(p5, 256, name='d_h6_conv'))
h7 = lrelu(conv3d_WN(h6, 256, name='d_h7_conv'))
up1 = deconv3d_WN(h7,256,name='d_up1_deconv')
up1 = tf.concat([h5,up1],4)
h8 = lrelu(conv3d_WN(up1, 128, name='d_h8_conv'))
h9 = lrelu(conv3d_WN(h8, 128, name='d_h9_conv'))
up2 = deconv3d_WN(h9,128,name='d_up2_deconv')
up2 = tf.concat([h3,up2],4)
h10 = lrelu(conv3d_WN(up2, 64, name='d_h10_conv'))
h11 = lrelu(conv3d_WN(h10, 64, name='d_h11_conv'))
up3 = deconv3d_WN(h11,64,name='d_up3_deconv')
up3 = tf.concat([h1,up3],4)
h12 = lrelu(conv3d_WN(up3, 32, name='d_h12_conv'))
h13 = lrelu(conv3d_WN(h12, 32, name='d_h13_conv'))
h14 = conv3d_WN(h13, F.num_classes,name='d_h14_conv')
return tf.nn.softmax(h14)
"""
Function to test the model and evaluate the predicted images
Parameters:
* patch_shape - shape of the patch
* extraction_step - stride while extracting patches
"""
def test(patch_shape,extraction_step):
with tf.Graph().as_default():
test_patches = tf.placeholder(tf.float32, [F.batch_size, patch_shape[0], patch_shape[1],
patch_shape[2], F.num_mod], name='real_patches')
# Define the network
output_soft = trained_dis_network(test_patches, reuse=None)
# To convert from one hat form
output=tf.argmax(output_soft, axis=-1)
print("Output Patch Shape:",output.get_shape())
# To load the saved checkpoint
saver = tf.train.Saver()
with tf.Session() as sess:
try:
load_model(F.best_checkpoint_dir, sess, saver)
print(" Checkpoint loaded succesfully!....\n")
except:
print(" [!] Checkpoint loading failed!....\n")
return
# Get patches from test images
patches_test, labels_test = preprocess_dynamic_lab(F.data_directory,
F.num_classes,extraction_step,patch_shape,
F.number_train_images,validating=F.training,
testing=F.testing,num_images_testing=F.number_test_images)
total_batches = int(patches_test.shape[0]/F.batch_size)
# Array to store the prediction results
predictions_test = np.zeros((patches_test.shape[0],patch_shape[0], patch_shape[1],
patch_shape[2]))
print("max and min of patches_test:",np.min(patches_test),np.max(patches_test))
print("Total number of Batches: ",total_batches)
# Batch wise prediction
for batch in range(total_batches):
patches_feed = patches_test[batch*F.batch_size:(batch+1)*F.batch_size,:,:,:,:]
preds = sess.run(output, feed_dict={test_patches:patches_feed})
predictions_test[batch*F.batch_size:(batch+1)*F.batch_size,:,:,:]=preds
print(("Processed_batch:[%8d/%8d]")%(batch,total_batches))
print("All patches Predicted")
print("Shape of predictions_test, min and max:",predictions_test.shape,np.min(predictions_test),
np.max(predictions_test))
# To stitch the image back
images_pred = recompose3D_overlap(predictions_test,144, 192, 256, extraction_step[0],
extraction_step[1],extraction_step[2])
print("Shape of Predicted Output Groundtruth Images:",images_pred.shape,
np.min(images_pred), np.max(images_pred),
np.mean(images_pred),np.mean(labels_test))
# To save the images
for i in range(F.number_test_images):
pred2d=np.reshape(images_pred[i],(144*192*256))
lab2d=np.reshape(labels_test[i],(144*192*256))
save_image(F.results_dir,images_pred[i],F.number_train_images+i+2)
# Evaluation
pred2d=np.reshape(images_pred,(images_pred.shape[0]*144*192*256))
lab2d=np.reshape(labels_test,(labels_test.shape[0]*144*192*256))
F1_score = f1_score(lab2d, pred2d,[0,1,2,3],average=None)
print("Testing Dice Coefficient.... ")
print("Background:",F1_score[0])
print("CSF:",F1_score[1])
print("GM:",F1_score[2])
print("WM:",F1_score[3])
return