import os
import pprint
import tensorflow as tf
from model import model
from test import *
# Define flags
flags = tf.app.flags
flags.DEFINE_integer("epoch", 300, "Number of training epochs (default: 300)")
flags.DEFINE_float("learning_rate_D", 0.0001, "Learning rate of Adam optimizer for Discriminator (default: 0.0001)")
flags.DEFINE_float("learning_rate_G", 0.0001, "Learning rate of Adam optimizer for Generator (default: 0.0001)")
flags.DEFINE_float("learning_rate_E", 0.0001, "Learning rate of Adam optimizer for Encoder (default: 0.0001)")
flags.DEFINE_float("beta1D", 0.5, "Momentum term of Adam optimizer for Discriminator (default: 0.5)")
flags.DEFINE_float("beta1G", 0.5, "Momentum term of Adam optimizer for Generator (default: 0.5)")
flags.DEFINE_float("beta1E", 0.5, "Momentum term of Adam optimizer for Encoder (default: 0.5)")
flags.DEFINE_float("gpu_frac", 0.95, "Gpu fraction")
flags.DEFINE_float("tlw", 0.5, "True loss weight")
flags.DEFINE_float("flw", 0.5, "Fake loss weight")
flags.DEFINE_float("vi_weight", 0.01, "Weight of variational inference loss")
flags.DEFINE_integer("number_train_images", 1, "No. of labeled images for training")
flags.DEFINE_integer("number_train_unlab_images", 12, "No. of unlabeled images for training")
flags.DEFINE_integer("number_test_images", 7, "No. of images for testing")
flags.DEFINE_string("data_directory", "../data/iSEG_preprocessed", "Directory name containing the dataset")
flags.DEFINE_string("checkpoint_dir", "checkpoint/current", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("best_checkpoint_dir", "checkpoint/best", "Directory name to save the best checkpoints [checkpoint]")
flags.DEFINE_string("results_dir", "results/", "Directory name to save the results [results]")
flags.DEFINE_boolean("load_chkpt", False, "True for loading saved checkpoint")
flags.DEFINE_boolean("training", False, "True for Training ")
flags.DEFINE_boolean("testing", False, "True for Testing ")
flags.DEFINE_boolean("badGAN", False, "True if you want to run badGAN based model ")
flags.DEFINE_boolean("use_weighted_fm", False, "True if you want to run Weighted Feature Matching based model ")
flags.DEFINE_integer("batch_size", 30, "The size of batch images [64]")
flags.DEFINE_integer("num_mod", 2, "Number of modalities of the input 3-D image")
flags.DEFINE_integer("num_classes", 4, "Number of output classes to segment")
flags.DEFINE_integer("noise_dim", 200, "Dimension of noise vector")
FLAGS = flags.FLAGS
def main(_):
# Create required directories
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.results_dir):
os.makedirs(FLAGS.results_dir)
if not os.path.exists(FLAGS.best_checkpoint_dir):
os.makedirs(FLAGS.best_checkpoint_dir)
# To configure the GPU fraction
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_frac)
# Parameters of extracted training and testing patches
patch_shape=(32,32,32)
extraction_step=(8,8,8)
testing_extraction_shape=(8,8,8)
if FLAGS.training:
# For training the network
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
network = model(sess,patch_shape,extraction_step)
network.build_model()
network.train()
if FLAGS.testing:
# For testing the trained network
test(patch_shape,testing_extraction_shape)
if __name__ == '__main__':
tf.app.run()