[4fa73e]: / pytorch / utils / preprocess.py

Download this file

234 lines (207 with data), 10.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import glob
import nibabel as nib
import numpy as np
import shutil
from nipype.interfaces.ants import N4BiasFieldCorrection
from sklearn.feature_extraction.image import extract_patches as sk_extract_patches
from sklearn.utils import shuffle
import scipy.misc
num_mod = 2
def get_filename(set_name, case_idx, input_name, loc):
pattern = '{0}/{1}/{3}/subject-{2}-{3}.nii'
return pattern.format(loc, set_name, case_idx, input_name)
def get_set_name(case_idx):
return 'Training' if case_idx < 11 else 'Testing'
def read_data(case_idx, input_name, loc):
set_name = get_set_name(case_idx)
image_path = get_filename(set_name, case_idx, input_name, loc)
print(image_path)
return nib.load(image_path)
def read_vol(case_idx, input_name, dir):
image_data = read_data(case_idx, input_name, dir)
return image_data.get_data()
def correct_bias(in_file, out_file):
correct = N4BiasFieldCorrection()
correct.inputs.input_image = in_file
correct.inputs.output_image = out_file
done = correct.run()
return done.outputs.output_image
def normalise(case_idx, input_name, in_dir, out_dir,copy=False):
set_name = get_set_name(case_idx)
image_in_path = get_filename(set_name, case_idx, input_name, in_dir)
image_out_path = get_filename(set_name, case_idx, input_name, out_dir)
if copy:
shutil.copy(image_in_path, image_out_path)
else:
correct_bias(image_in_path, image_out_path)
print(image_in_path + " done.")
"""
To extract patches from a 3D image
"""
def extract_patches(volume, patch_shape, extraction_step,datype='float32'):
patch_h, patch_w, patch_d = patch_shape[0], patch_shape[1], patch_shape[2]
stride_h, stride_w, stride_d = extraction_step[0], extraction_step[1], extraction_step[2]
img_h, img_w, img_d = volume.shape[0],volume.shape[1],volume.shape[2]
N_patches_h = (img_h-patch_h)//stride_h+1
N_patches_w = (img_w-patch_w)//stride_w+1
N_patches_d = (img_d-patch_d)//stride_d+1
N_patches_img = N_patches_h * N_patches_w * N_patches_d
raw_patch_martrix = np.zeros((N_patches_img,patch_h,patch_w,patch_d),dtype=datype)
k=0
#iterator over all the patches
for h in range((img_h-patch_h)//stride_h+1):
for w in range((img_w-patch_w)//stride_w+1):
for d in range((img_d-patch_d)//stride_d+1):
raw_patch_martrix[k]=volume[h*stride_h:(h*stride_h)+patch_h,\
w*stride_w:(w*stride_w)+patch_w,\
d*stride_d:(d*stride_d)+patch_d]
k+=1
assert(k==N_patches_img)
return raw_patch_martrix
"""
To extract labeled patches from array of 3D labeled images
"""
def get_patches_lab(T1_vols, T2_vols, label_vols, extraction_step,
patch_shape,validating,testing,num_images_training):
patch_shape_1d=patch_shape[0]
# Extract patches from input volumes and ground truth
x = np.zeros((0, patch_shape_1d, patch_shape_1d, patch_shape_1d, num_mod),dtype="float32")
y = np.zeros((0, patch_shape_1d, patch_shape_1d, patch_shape_1d),dtype="uint8")
for idx in range(len(T1_vols)) :
y_length = len(y)
if testing:
print(("Extracting Patches from Image %2d ....")%(num_images_training+idx+2))
elif validating:
print(("Extracting Patches from Image %2d ....")%(num_images_training+idx+1))
else:
print(("Extracting Patches from Image %2d ....")%(1+idx))
label_patches = extract_patches(label_vols[idx], patch_shape, extraction_step,
datype="uint8")
# Select only those who are important for processing
if testing or validating:
valid_idxs = np.where(np.sum(label_patches, axis=(1, 2, 3)) != -1)
else:
valid_idxs = np.where(np.count_nonzero(label_patches, axis=(1, 2, 3)) > 6000)
# Filtering extracted patches
label_patches = label_patches[valid_idxs]
x = np.vstack((x, np.zeros((len(label_patches), patch_shape_1d,
patch_shape_1d, patch_shape_1d, num_mod),dtype="float32")))
y = np.vstack((y, np.zeros((len(label_patches), patch_shape_1d,
patch_shape_1d, patch_shape_1d),dtype="uint8")))
y[y_length:, :, :, :] = label_patches
# Sampling strategy: reject samples which labels are mostly 0 and have less than 6000 nonzero elements
T1_train = extract_patches(T1_vols[idx], patch_shape, extraction_step,datype="float32")
x[y_length:, :, :, :, 0] = T1_train[valid_idxs]
# Sampling strategy: reject samples which labels are mostly 0 and have less than 6000 nonzero elements
T2_train = extract_patches(T2_vols[idx], patch_shape, extraction_step,datype="float32")
x[y_length:, :, :, :, 1] = T2_train[valid_idxs]
return x, y
"""
To preprocess the labeled training data
"""
def preprocess_dynamic_lab(dir, seed, num_classes, extraction_step,patch_shape,num_images_training=2,
validating=False,testing=False,num_images_testing=7):
x = list(range(1,11))
if testing:
print("Testing")
index_start = num_images_training + 2
index_end = index_start + num_images_testing
T1_vols = np.empty((num_images_testing, 144, 192, 256),dtype="float32")
T2_vols = np.empty((num_images_testing, 144, 192, 256),dtype="float32")
label_vols = np.empty((num_images_testing, 144, 192, 256),dtype="uint8")
elif validating:
print("Validating")
index_start = num_images_training + 1
index_end = index_start + 1
T1_vols = np.empty((1, 144, 192, 256),dtype="float32")
T2_vols = np.empty((1, 144, 192, 256),dtype="float32")
label_vols = np.empty((1, 144, 192, 256),dtype="uint8")
else:
print("Training")
index_start = 1
index_end = index_start + num_images_training
T1_vols = np.empty((num_images_training, 144, 192, 256),dtype="float32")
T2_vols = np.empty((num_images_training, 144, 192, 256),dtype="float32")
label_vols = np.empty((num_images_training, 144, 192, 256),dtype="uint8")
i = 0
for index in range(index_start, index_end) :
print(x[index-1])
T1_vols[i, :, :, :] = read_vol(x[index-1], 'T1', dir)
T2_vols[i, :, :, :] = read_vol(x[index-1], 'T2', dir)
label_vols[i, :, :, :] = read_vol(x[index-1], 'label', dir)
i = i + 1
T1_mean = T1_vols.mean()
T1_std = T1_vols.std()
T1_vols = (T1_vols - T1_mean) / T1_std
T2_mean = T2_vols.mean()
T2_std = T2_vols.std()
T2_vols = (T2_vols - T2_mean) / T2_std
for i in range(T1_vols.shape[0]):
T1_vols[i] = ((T1_vols[i] - np.min(T1_vols[i])) /
(np.max(T1_vols[i])-np.min(T1_vols[i])))*255
for i in range(T2_vols.shape[0]):
T2_vols[i] = ((T2_vols[i] - np.min(T2_vols[i])) /
(np.max(T2_vols[i])-np.min(T2_vols[i])))*255
T1_vols = T1_vols/127.5 -1.
T2_vols = T2_vols/127.5 -1.
x,y=get_patches_lab(T1_vols,T2_vols,label_vols,extraction_step,patch_shape,validating=validating,
testing=testing,num_images_training=num_images_training)
print("Total Extracted Labelled Patches Shape:",x.shape,y.shape)
if testing:
return np.rollaxis(x, 4, 1), label_vols
elif validating:
return np.rollaxis(x, 4, 1), y, label_vols
else:
return np.rollaxis(x, 4, 1), y
"""
To extract labeled patches from array of 3D ulabeled images
"""
def get_patches_unlab(T1_vols, T2_vols, extraction_step,patch_shape,dir):
patch_shape_1d=patch_shape[0]
# Extract patches from input volumes and ground truth
label_ref= np.empty((1, 144, 192, 256),dtype="uint8")
x = np.zeros((0, patch_shape_1d, patch_shape_1d, patch_shape_1d, num_mod))
label_ref = read_vol(1, 'label', dir)
for idx in range(len(T1_vols)) :
x_length = len(x)
print(("Processing the Image %2d ....")%(idx+11))
label_patches = extract_patches(label_ref, patch_shape, extraction_step)
# Select only those who are important for processing
# Sampling strategy: reject samples which labels are mostly 0 and have less than 6000 nonzero elements
valid_idxs = np.where(np.count_nonzero(label_patches, axis=(1, 2, 3)) > 6000)
label_patches = label_patches[valid_idxs]
x = np.vstack((x, np.zeros((len(label_patches), patch_shape_1d,
patch_shape_1d, patch_shape_1d, num_mod))))
T1_train = extract_patches(T1_vols[idx], patch_shape, extraction_step,datype="float32")
x[x_length:, :, :, :, 0] = T1_train[valid_idxs]
T2_train = extract_patches(T2_vols[idx], patch_shape, extraction_step,datype="float32")
x[x_length:, :, :, :, 1] = T2_train[valid_idxs]
return x
"""
To preprocess the unlabeled training data
"""
def preprocess_dynamic_unlab(dir,extraction_step,patch_shape,num_images_training_unlab):
T1_vols = np.empty((num_images_training_unlab, 144, 192, 256),dtype="float32")
T2_vols = np.empty((num_images_training_unlab, 144, 192, 256),dtype="float32")
for case_idx in range(11, 11+num_images_training_unlab) :
T1_vols[(case_idx - 11), :, :, :] = read_vol(case_idx, 'T1', dir)
T2_vols[(case_idx - 11), :, :, :] = read_vol(case_idx, 'T2', dir)
#print(read_vol(case_idx, 'T2', dir).shape)
T1_mean = T1_vols.mean()
T1_std = T1_vols.std()
T1_vols = (T1_vols - T1_mean) / T1_std
T2_mean = T2_vols.mean()
T2_std = T2_vols.std()
T2_vols = (T2_vols - T2_mean) / T2_std
for i in range(T1_vols.shape[0]):
T1_vols[i] = ((T1_vols[i] - np.min(T1_vols[i])) /
(np.max(T1_vols[i])-np.min(T1_vols[i])))*255
for i in range(T2_vols.shape[0]):
T2_vols[i] = ((T2_vols[i] - np.min(T2_vols[i])) /
(np.max(T2_vols[i])-np.min(T2_vols[i])))*255
T1_vols = T1_vols/127.5 -1.
T2_vols = T2_vols/127.5 -1.
x=get_patches_unlab(T1_vols, T2_vols, extraction_step, patch_shape,dir)
print("Total Extracted Unlabeled Patches Shape:",x.shape)
return np.rollaxis(x, 4, 1)