[4fa73e]: / pytorch / agents / supervised_baseline.py

Download this file

240 lines (195 with data), 10.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
import os
from tqdm import tqdm
import shutil
import random
import torch
from torch import nn
from torch.backends import cudnn
from torch.autograd import Variable
import torchvision.utils as vutils
from sklearn.metrics import f1_score
from agents.base import BaseAgent
from graphs.models.discriminator import Discriminator
from datasets.dataloader import Supervised_Dataset
from tensorboardX import SummaryWriter
from utils.metrics import AverageMeter, AverageMeterList
from utils.misc import print_cuda_statistics
from utils.recompose import recompose3D_overlap
cudnn.benchmark = True
class Supervised_Model(BaseAgent):
def __init__(self, config):
super().__init__(config)
self.net = Discriminator(self.config) # Segmenation Network
if config.phase == 'testing':
self.testloader = Supervised_Dataset(self.config, "testing")
else:
self.trainloader = Supervised_Dataset(self.config, "training")
self.valloader = Supervised_Dataset(self.config, "validating")
# optimizer
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=self.config.learning_rate, betas=(self.config.beta1, self.config.beta2))
# counter initialization
self.current_epoch = 0
self.best_validation_dice = 0
self.current_iteration = 0
self.is_cuda = torch.cuda.is_available()
if self.is_cuda and not self.config.cuda:
self.logger.info("WARNING: You have a CUDA device, so you should probably enable CUDA")
self.cuda = self.is_cuda & self.config.cuda
if self.cuda:
self.net = self.net.cuda()
class_weights = torch.tensor([[0.33, 1.5, 0.83, 1.33]])
if self.cuda:
class_weights = torch.FloatTensor(class_weights).cuda()
self.criterion = nn.CrossEntropyLoss(class_weights)
# set the manual seed for torch
if not self.config.seed:
self.manual_seed = random.randint(1, 10000)
else:
self.manual_seed = self.config.seed
self.logger.info ("seed: %d" , self.manual_seed)
random.seed(self.manual_seed)
if self.cuda:
self.device = torch.device("cuda")
torch.cuda.set_device(self.config.gpu_device)
torch.cuda.manual_seed_all(self.manual_seed)
self.logger.info("Program will run on *****GPU-CUDA***** ")
print_cuda_statistics()
else:
self.device = torch.device("cpu")
torch.manual_seed(self.manual_seed)
self.logger.info("Program will run on *****CPU***** ")
if(self.config.load_chkpt == True):
self.load_checkpoint()
def load_checkpoint(self, phase):
try:
if phase == 'training':
filename = os.path.join(self.config.checkpoint_dir, 'checkpoint.pth.tar')
elif phase == 'testing':
filename = os.path.join(self.config.checkpoint_dir, 'model_best.pth.tar')
self.logger.info("Loading checkpoint '{}'".format(filename))
checkpoint = torch.load(filename)
self.current_epoch = checkpoint['epoch']
self.net.load_state_dict(checkpoint['net'])
self.manual_seed = checkpoint['manual_seed']
self.logger.info("Checkpoint loaded successfully from '{}' at (epoch {})\n"
.format(self.config.checkpoint_dir, checkpoint['epoch']))
except OSError as e:
self.logger.info("No checkpoint exists from '{}'. Skipping...".format(self.config.checkpoint_dir))
self.logger.info("**First time to train**")
def save_checkpoint(self, is_best=False):
file_name="checkpoint.pth.tar"
state = {
'epoch': self.current_epoch,
'net': self.net.state_dict(),
'manual_seed': self.manual_seed
}
torch.save(state, os.path.join(self.config.checkpoint_dir , file_name))
if is_best:
print("SAVING BEST CHECKPOINT !!!")
shutil.copyfile(self.config.checkpoint_dir + file_name,
self.config.checkpoint_dir + 'model_best.pth.tar')
def run(self):
try:
if self.config.phase == 'training':
self.train()
if self.config.phase == 'testing':
self.load_checkpoint(self.config.phase)
self.test()
except KeyboardInterrupt:
self.logger.info("You have entered CTRL+C.. Wait to finalize")
def train(self):
for epoch in range(self.current_epoch, self.config.epochs):
self.current_epoch = epoch
self.current_iteration = 0
self.train_one_epoch()
self.save_checkpoint()
if(self.current_epoch % self.config.validation_every_epoch == 0):
self.validate()
def train_one_epoch(self):
# initialize tqdm batch
tqdm_batch = tqdm(self.trainloader.loader, total=self.trainloader.num_iterations, desc="epoch-{}-".format(self.current_epoch))
self.net.train()
epoch_loss = AverageMeter()
for curr_it, (patches, labels) in enumerate(tqdm_batch):
#y = torch.full((self.batch_size,), self.real_label)
if self.cuda:
patches = patches.cuda()
labels = labels.cuda()
patches = Variable(patches)
labels = Variable(labels).long()
self.net.zero_grad()
output_logits, output_prob = self.net(patches)
loss = self.criterion(output_logits, labels)
loss.backward()
self.optimizer.step()
epoch_loss.update(loss.item())
self.current_iteration += 1
print("Epoch: {0}, Iteration: {1}/{2}, Loss: {3}".format(self.current_epoch, self.current_iteration,\
self.trainloader.num_iterations, loss.item()))
tqdm_batch.close()
self.logger.info("Training at epoch-" + str(self.current_epoch) + " | " + "Model loss: " + str(epoch_loss.val))
def validate(self):
self.net.eval()
prediction_image = torch.zeros([self.valloader.dataset.label.shape[0], self.config.patch_shape[0],\
self.config.patch_shape[1], self.config.patch_shape[2]])
whole_vol = self.valloader.dataset.whole_vol
for batch_number, (patches, label, _) in enumerate(self.valloader.loader):
patches = patches.cuda()
_, batch_prediction_softmax = self.net(patches)
batch_prediction = torch.argmax(batch_prediction_softmax, dim=1).cpu()
prediction_image[batch_number*self.config.batch_size:(batch_number+1)*self.config.batch_size,:,:,:] = batch_prediction
print("Validating.. [{0}/{1}]".format(batch_number, self.valloader.num_iterations))
vol_shape_x, vol_shape_y, vol_shape_z = self.config.volume_shape
prediction_image = prediction_image.numpy()
val_image_pred = recompose3D_overlap(prediction_image, vol_shape_x, vol_shape_y, vol_shape_z, self.config.extraction_step[0],
self.config.extraction_step[1],self.config.extraction_step[2])
val_image_pred = val_image_pred.astype('uint8')
pred2d=np.reshape(val_image_pred,(val_image_pred.shape[0]*vol_shape_x*vol_shape_y*vol_shape_z))
lab2d=np.reshape(whole_vol,(whole_vol.shape[0]*vol_shape_x*vol_shape_y*vol_shape_z))
classes = list(range(0, self.config.num_classes))
F1_score = f1_score(lab2d, pred2d, classes, average=None)
print("Validation Dice Coefficient.... ")
print("Background:",F1_score[0])
print("CSF:",F1_score[1])
print("GM:",F1_score[2])
print("WM:",F1_score[3])
current_validation_dice = F1_score[2] + F1_score[3]
if(self.best_validation_dice < current_validation_dice):
self.best_validation_dice = current_validation_dice
self.save_checkpoint(is_best = True)
def test(self):
self.net.eval()
prediction_image = torch.zeros([self.testloader.dataset.patches.shape[0], self.config.patch_shape[0],\
self.config.patch_shape[1], self.config.patch_shape[2]])
whole_vol = self.testloader.dataset.whole_vol
for batch_number, (patches, _) in enumerate(self.testloader.loader):
patches = patches.cuda()
_, batch_prediction_softmax = self.net(patches)
batch_prediction = torch.argmax(batch_prediction_softmax, dim=1).cpu()
prediction_image[batch_number*self.config.batch_size:(batch_number+1)*self.config.batch_size,:,:,:] = batch_prediction
print("Testing.. [{0}/{1}]".format(batch_number, self.testloader.num_iterations))
vol_shape_x, vol_shape_y, vol_shape_z = self.config.volume_shape
prediction_image = prediction_image.numpy()
test_image_pred = recompose3D_overlap(prediction_image, vol_shape_x, vol_shape_y, vol_shape_z, self.config.extraction_step[0],
self.config.extraction_step[1],self.config.extraction_step[2])
test_image_pred = test_image_pred.astype('uint8')
pred2d=np.reshape(test_image_pred,(test_image_pred.shape[0]*vol_shape_x*vol_shape_y*vol_shape_z))
lab2d=np.reshape(whole_vol,(whole_vol.shape[0]*vol_shape_x*vol_shape_y*vol_shape_z))
classes = list(range(0, self.config.num_classes))
F1_score = f1_score(lab2d, pred2d, classes, average=None)
print("Test Dice Coefficient.... ")
print("Background:",F1_score[0])
print("CSF:",F1_score[1])
print("GM:",F1_score[2])
print("WM:",F1_score[3])
def finalize(self):
"""
Finalize all the operations of the 2 Main classes of the process the operator and the data loader
:return:
"""
self.logger.info("Please wait while finalizing the operation.. Thank you")
self.save_checkpoint()
# self.summary_writer.export_scalars_to_json("{}all_scalars.json".format(self.config.summary_dir))
# self.summary_writer.close()
# self.dataloader.finalize()