[54a97f]: / configs / metadata.json

Download this file

100 lines (99 with data), 4.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.5.5",
"changelog": {
"0.5.5": "update AddChanneld with EnsureChannelFirstd and set image_only to False",
"0.5.4": "fix the wrong GPU index issue of multi-node",
"0.5.3": "remove error dollar symbol in readme",
"0.5.2": "remove the CheckpointLoader from the train.json",
"0.5.1": "add RAM warning",
"0.5.0": "update TensorRT descriptions",
"0.4.9": "update the model weights",
"0.4.8": "update the TensorRT part in the README file",
"0.4.7": "fix mgpu finalize issue",
"0.4.6": "enable deterministic training",
"0.4.5": "add the command of executing inference with TensorRT models",
"0.4.4": "adapt to BundleWorkflow interface",
"0.4.3": "update this bundle to support TensorRT convert",
"0.4.2": "support monai 1.2 new FlexibleUNet",
"0.4.1": "add name tag",
"0.4.0": "add support for multi-GPU training and evaluation",
"0.3.2": "restructure readme to match updated template",
"0.3.1": "add figures of workflow and metrics, add invert transform",
"0.3.0": "update dataset processing",
"0.2.1": "update to use monai 1.0.1",
"0.2.0": "update license files",
"0.1.0": "complete the first version model package",
"0.0.1": "initialize the model package structure"
},
"monai_version": "1.3.0rc1",
"pytorch_version": "1.13.1",
"numpy_version": "1.22.2",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9"
},
"name": "Endoscopic tool segmentation",
"task": "Endoscopic tool segmentation",
"description": "A pre-trained binary segmentation model for endoscopic tool segmentation",
"authors": "NVIDIA DLMED team",
"copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION",
"data_source": "private dataset",
"data_type": "RGB",
"image_classes": "three channel data, intensity [0-255]",
"label_classes": "single channel data, 1/255 is tool, 0 is background",
"pred_classes": "2 channels OneHot data, channel 1 is tool, channel 0 is background",
"eval_metrics": {
"mean_iou": 0.86
},
"references": [
"Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. ICML, 2019a. https://arxiv.org/pdf/1905.11946.pdf",
"O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234\u2013241. Springer, 2015. https://arxiv.org/pdf/1505.04597.pdf"
],
"network_data_format": {
"inputs": {
"image": {
"type": "magnitude",
"format": "RGB",
"modality": "regular",
"num_channels": 3,
"spatial_shape": [
736,
480
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": false,
"channel_def": {
"0": "R",
"1": "G",
"2": "B"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 2,
"spatial_shape": [
736,
480
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": false,
"channel_def": {
"0": "background",
"1": "tools"
}
}
}
}
}