[9b26b7]: / deepvariant / realigner / debruijn_graph.cc

Download this file

459 lines (402 with data), 15.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*
* Copyright 2017 Google LLC.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "deepvariant/realigner/debruijn_graph.h"
#include <algorithm>
#include <iterator>
#include <map>
#include <memory>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <vector>
#include "deepvariant/protos/realigner.pb.h"
#include "absl/container/btree_set.h"
#include "absl/container/flat_hash_set.h"
#include "absl/container/node_hash_set.h"
#include "absl/log/check.h"
#include "absl/strings/ascii.h"
#include "absl/strings/string_view.h"
#include "boost/graph/adjacency_list.hpp"
#include "boost/graph/depth_first_search.hpp"
#include "boost/graph/graphviz.hpp"
#include "boost/graph/reverse_graph.hpp"
#include "third_party/nucleus/protos/reads.pb.h"
#include "third_party/nucleus/util/utils.h"
namespace learning {
namespace genomics {
namespace deepvariant {
using Vertex = DeBruijnGraph::Vertex;
using VertexIndexMap = DeBruijnGraph::VertexIndexMap;
using Edge = DeBruijnGraph::Edge;
using Path = DeBruijnGraph::Path;
using Read = nucleus::genomics::v1::Read;
using absl::string_view;
namespace {
// Visitor classes we will use to run boost algorithms. N.B.: these classes
// operate by side effect, modifying pointers that are passed in. This is not
// an optimal design, rather it is to work around the copying done by
// boost::visitor which makes it difficult for our code to retain a pointer to
// the visitor object that is actually used.
class CycleDetector : public boost::dfs_visitor<> {
public:
explicit CycleDetector(bool* has_cycle) : has_cycle(has_cycle) {}
template <class Edge, class Graph>
void back_edge(Edge, const Graph&) {
*has_cycle = true;
}
private:
bool* has_cycle;
};
template <class BoostGraph>
class EdgeLabelWriter {
public:
explicit EdgeLabelWriter(const BoostGraph& g) : g_(g) {}
void operator()(std::ostream& out, const Edge e) const {
EdgeInfo ei = g_[e];
out << "[label=" << std::to_string(ei.weight)
<< (ei.is_ref ? " color=red" : "") << "]";
}
private:
const BoostGraph& g_;
};
class ReachableVertexVisitor : public boost::dfs_visitor<> {
public:
explicit ReachableVertexVisitor(std::set<Vertex>* reachable_vertices)
: reachable_vertices(reachable_vertices) {}
template <class Edge, class Graph>
void tree_edge(Edge e, const Graph& g) {
Vertex from = boost::source(e, g);
if (reachable_vertices->find(from) != reachable_vertices->end()) {
Vertex to = boost::target(e, g);
reachable_vertices->insert(to);
}
}
private:
std::set<Vertex>* reachable_vertices;
};
template <class BoostGraphT, class VertexIndexMapT>
std::set<Vertex> VerticesReachableFrom(
Vertex v, const BoostGraphT& g, const VertexIndexMapT& vertex_index_map) {
std::set<Vertex> reachable_vertices{v};
ReachableVertexVisitor vis(&reachable_vertices);
boost::depth_first_search(
g, boost::visitor(vis).root_vertex(v).vertex_index_map(vertex_index_map));
return reachable_vertices;
}
} // namespace
Vertex DeBruijnGraph::EnsureVertex(string_view kmer) {
Vertex v;
auto vertex_find = kmer_to_vertex_.find(kmer);
if (vertex_find != kmer_to_vertex_.end()) {
v = (*vertex_find).second;
} else {
string kmer_copy(kmer);
v = boost::add_vertex(VertexInfo{kmer_copy}, g_);
// N.B.: must use the long-lived string in the map key as the referent of
// the string_view key.
kmer_to_vertex_[g_[v].kmer] = v;
}
return v;
}
Vertex DeBruijnGraph::VertexForKmer(string_view kmer) const {
return kmer_to_vertex_.at(kmer);
}
void DeBruijnGraph::RebuildIndexMap() {
std::map<Vertex, int> table;
VertexIterator vi, vend;
std::tie(vi, vend) = boost::vertices(g_);
int index = 0;
for (; vi != vend; ++vi) {
table[*vi] = index;
++index;
}
vertex_index_map_ = table;
}
VertexIndexMap DeBruijnGraph::IndexMap() const {
boost::const_associative_property_map<RawVertexIndexMap> vmap(
vertex_index_map_);
return vmap;
}
bool DeBruijnGraph::HasCycle() const {
bool has_cycle = false;
CycleDetector cycle_detector(&has_cycle);
boost::depth_first_search(
g_, boost::visitor(cycle_detector).vertex_index_map(IndexMap()));
return has_cycle;
}
DeBruijnGraph::DeBruijnGraph(
absl::string_view ref,
const std::vector<nucleus::ConstProtoPtr<const Read>>& reads,
const Options& options, int k)
: options_(options), k_(k) {
CHECK_GT(k, 0); // k should always be a positive integer.
CHECK(static_cast<uint32_t>(k) < ref.size());
AddEdgesForReference(ref);
source_ = VertexForKmer(ref.substr(0, k_));
sink_ = VertexForKmer(ref.substr(ref.size() - k_, k_));
for (const nucleus::ConstProtoPtr<const Read>& read_ptr : reads) {
const Read& read = *read_ptr.p_;
if (read.alignment().mapping_quality() >= options.min_mapq()) {
AddEdgesForRead(read);
}
}
RebuildIndexMap();
}
// Indicates that we couldn't find a minimum k that can be used.
constexpr int kBoundsNoWorkingK = -1;
struct KBounds {
int min_k; // Minimum k to consider (inclusive).
int max_k; // Maximum k to consider (inclusive).
};
KBounds KMinMaxFromReference(const string_view ref,
const DeBruijnGraph::Options& options) {
KBounds bounds;
bounds.min_k = kBoundsNoWorkingK;
bounds.max_k = std::min(options.max_k(), static_cast<int>(ref.size()) - 1);
for (int k = options.min_k(); k <= bounds.max_k; k += options.step_k()) {
bool has_cycle = false;
absl::btree_set<string_view> kmers;
for (int i = 0; i < ref.size() - k + 1; i++) {
string_view kmer = ref.substr(i, k);
if (kmers.insert(kmer).second == false) {
// No insertion took place because the kmer already exists. This implies
// that there's a cycle in the graph.
has_cycle = true;
break;
}
}
if (!has_cycle) {
bounds.min_k = k;
break;
}
}
return bounds;
}
std::unique_ptr<DeBruijnGraph> DeBruijnGraph::Build(
const string& ref,
const std::vector<nucleus::ConstProtoPtr<const Read>>& reads,
const DeBruijnGraph::Options& options) {
KBounds bounds = KMinMaxFromReference(ref, options);
if (bounds.min_k == kBoundsNoWorkingK) return nullptr;
for (int k = bounds.min_k; k <= bounds.max_k; k += options.step_k()) {
std::unique_ptr<DeBruijnGraph> graph = std::unique_ptr<DeBruijnGraph>(
new DeBruijnGraph(ref, reads, options, k));
if (graph->HasCycle()) {
continue;
} else {
graph->Prune();
return graph;
}
}
return nullptr;
}
Edge DeBruijnGraph::AddEdge(Vertex from_vertex, Vertex to_vertex, bool is_ref) {
bool was_present;
Edge edge;
std::tie(edge, was_present) = boost::edge(from_vertex, to_vertex, g_);
if (!was_present) {
std::tie(edge, std::ignore) = boost::add_edge(from_vertex, to_vertex,
EdgeInfo{0, false}, g_);
}
EdgeInfo& ei = g_[edge];
ei.weight++;
ei.is_ref |= is_ref;
return edge;
}
void DeBruijnGraph::AddKmersAndEdges(string_view bases, int start, int end,
bool is_ref) {
CHECK_GE(start, 0);
CHECK_LE(start + k_, bases.size());
CHECK_LE(end + k_, bases.size());
// End can be less than 0, in which case we return without doing any work.
if (end > 0) {
Vertex vertex_prev = EnsureVertex(bases.substr(start, k_));
for (int i = start + 1; i <= end; ++i) {
Vertex vertex_cur = EnsureVertex(bases.substr(i, k_));
AddEdge(vertex_prev, vertex_cur, is_ref);
vertex_prev = vertex_cur;
}
}
}
void DeBruijnGraph::AddEdgesForReference(string_view ref) {
AddKmersAndEdges(ref, 0, ref.size() - k_, true /* is_ref */);
}
void DeBruijnGraph::AddEdgesForRead(const nucleus::genomics::v1::Read& read) {
const string bases = absl::AsciiStrToUpper(read.aligned_sequence());
// Lambda function to find the next bad position in the read, if one exists,
// starting from offset `start` in the read. If all remains bases/quals are
// good, returns bases.size().
auto NextBadPosition = [&read, &bases, this](int start) -> int {
for (int i = start; i < bases.size(); ++i) {
if (!IsCanonicalBase(bases[i], nucleus::CanonicalBases::ACGT) ||
read.aligned_quality()[i] < options_.min_base_quality()) {
return i;
}
}
return bases.size();
};
// This algorithm is simple and fast, but it isn't the most straightforward
// implementation so it merits a few comments.
//
// Suppose I have the following data:
//
// offset: 01234567
// bases: ACGTAACC
// bad? : 00010000
// k_ : 2 <= using a kmer size of 2
//
// The algorithm below loops over positions (variable `i`), pulling kmers of
// length k from positions `i` and `i + 1` to add as edges. The key
// calculation is NextBadPosition that searches from the current `i` position
// for the next position that is bad. In the above example, this would be the
// 3 position. We then loop from i until `next_bad_position - k`, to create
// our edges, since we know that everything from i to next_bad_position is
// good but we cannot construct a valid kmer that overlaps next_bad_position
// so it invalidates all kmer starts from `next_bad_position - k`. Finally, we
// set i to `next_bad_position + 1`, which is the very next starting position
// after the last bad position, and the algorithm repeats.
//
// This algorithm has many important properties for performance:
//
// * It doesn't allocate any data structures to support the calculation.
// * It only examines whether a given position is good/bad once.
// * The loop to add edges is streamlined, without any unnecessary checks.
//
const string_view bases_view(bases);
// Note that this SIGNED int type declaration is key to avoid
// bases.size() - k_ underflowing.
const int stop = bases.size() - k_;
int i = 0;
while (i < stop) {
int next_bad_position = NextBadPosition(i);
AddKmersAndEdges(bases_view, i, next_bad_position - k_, false /* is_ref */);
i = next_bad_position + 1;
}
}
std::vector<Path> DeBruijnGraph::CandidatePaths() const {
std::vector<Path> terminated_paths;
std::queue<Path> extendable_paths;
CHECK_GT(boost::out_degree(source_, g_), 0);
extendable_paths.push({source_});
// Inefficient.
while (!extendable_paths.empty()) {
// Some windows can have an extremely branchy graph. Ideally windows would
// be chosen to avoid this. We give up if we encounter too many paths.
int n_total_paths = terminated_paths.size() + extendable_paths.size();
if (n_total_paths > options_.max_num_paths()) {
return {};
}
Path path = extendable_paths.front();
extendable_paths.pop();
Vertex last_v = path.back();
// For each successor of last_v, add path::successor to the
// appropriate queue.
AdjacencyIterator vi, vend;
std::tie(vi, vend) = boost::adjacent_vertices(last_v, g_);
for (; vi != vend; ++vi) {
Path extended_path(path);
extended_path.push_back(*vi);
if (*vi == sink_ || boost::out_degree(*vi, g_) == 0) {
terminated_paths.push_back(extended_path);
} else {
extendable_paths.push(extended_path);
}
}
}
return terminated_paths;
}
string DeBruijnGraph::HaplotypeForPath(const Path& path) const {
std::stringstream haplotype;
for (Vertex v : path) {
haplotype << g_[v].kmer[0];
}
if (!path.empty()) {
haplotype << g_[path.back()].kmer.substr(1, k_ - 1);
}
return haplotype.str();
}
std::vector<std::string> DeBruijnGraph::CandidateHaplotypes() const {
std::vector<std::string> haplotypes;
for (const Path& path : CandidatePaths()) {
haplotypes.push_back(HaplotypeForPath(path));
}
std::sort(haplotypes.begin(), haplotypes.end());
return haplotypes;
}
string DeBruijnGraph::GraphViz() const {
std::stringstream graphviz;
auto vertex_label_writer = boost::make_label_writer(
boost::get(&VertexInfo::kmer, g_));
boost::write_graphviz(
graphviz,
g_,
vertex_label_writer,
EdgeLabelWriter<BoostGraph>(g_),
boost::default_writer(),
IndexMap());
return graphviz.str();
}
void DeBruijnGraph::Prune() {
// Remove low-weight edges not in the reference.
boost::remove_edge_if(
[this](const Edge& e) {
return !g_[e].is_ref && g_[e].weight < options_.min_edge_weight();
},
g_);
// Remove vertices not reachable forward from src or backward from sink.
VertexIterator vbegin, vend;
std::tie(vbegin, vend) = boost::vertices(g_);
absl::flat_hash_set<Vertex> all_vertices(vbegin, vend);
std::set<Vertex> fwd_reachable_vertices, rev_reachable_vertices;
fwd_reachable_vertices = VerticesReachableFrom(
source_, g_, IndexMap());
rev_reachable_vertices = VerticesReachableFrom(
sink_, boost::make_reverse_graph(g_), IndexMap());
absl::flat_hash_set<Vertex> reachable_vertices;
std::set_intersection(
fwd_reachable_vertices.begin(), fwd_reachable_vertices.end(),
rev_reachable_vertices.begin(), rev_reachable_vertices.end(),
std::inserter(reachable_vertices, reachable_vertices.end()));
for (Vertex v : all_vertices) {
if (reachable_vertices.find(v) == reachable_vertices.end()) {
kmer_to_vertex_.erase(g_[v].kmer);
boost::clear_vertex(v, g_);
boost::remove_vertex(v, g_);
}
}
RebuildIndexMap();
}
} // namespace deepvariant
} // namespace genomics
} // namespace learning