[9b26b7]: / deepvariant / labeler / labeled_examples_to_vcf.py

Download this file

223 lines (198 with data), 7.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2017 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# pylint: disable=line-too-long
r"""Converts labeled DeepVariant examples protos into a VCF file.
By default, the GT for each of the VCF entries will be parsed from the variant
in the DeepVariant tf.Example. If the variant doesn't have the GT field, we'll
use the `label` in the example to fill the GT field.
There is an optional --allow_unlabeled_examples flag which will make any
unlabeled examples with ./. as GT. Default for --allow_unlabeled_examples is
false, which means the code will crash if any examples are unlabeled (no GT in
variant AND also no label in tf.Example.)
"""
# pylint: enable=line-too-long
import itertools
from absl import app
from absl import flags
from absl import logging
from deepvariant import dv_utils
from deepvariant import dv_vcf_constants
from third_party.nucleus.io import fasta
from third_party.nucleus.io import tfrecord
from third_party.nucleus.io import vcf
from third_party.nucleus.util import variant_utils
from third_party.nucleus.util import variantcall_utils
_ALLOW_UNLABELED_EXAMPLES = flags.DEFINE_bool(
'allow_unlabeled_examples',
None,
'If True, allow unlabeled examples as input and output ./. as the GT.',
)
_REF = flags.DEFINE_string(
'ref',
None,
(
'Required. Genome reference. Used to get the reference contigs for the '
'VCF file.'
),
)
_EXAMPLES = flags.DEFINE_string(
'examples',
None,
'Required. Path to labeled, DeepVariant tf.Example protos.',
)
_OUTPUT_VCF = flags.DEFINE_string(
'output_vcf', None, 'Required. Path where we will write out output VCF.'
)
_SAMPLE_NAME = flags.DEFINE_string(
'sample_name',
'',
(
'The sample name to write into the VCF. By default this is None, '
'indicating we will use the call_set_name of the sample encoded in the '
'example variant.'
),
)
_MAX_RECORDS = flags.DEFINE_integer(
'max_records',
-1,
(
'If provided, we will only read in at most max_record examples for '
'conversion to VCF.'
),
)
_LOG_EVERY = flags.DEFINE_integer(
'log_every',
10000,
(
'How frequently should we provide updates on the conversion process? We'
' will log our conversion of every `log_every` variants.'
),
)
def _example_sort_key(example):
return variant_utils.variant_range_tuple(dv_utils.example_variant(example))
def examples_to_variants(examples_path, max_records=None):
"""Yields Variant protos from the examples in examples_path.
This function reads in tf.Examples produced by DeepVariant from examples_path,
which may contain a sharded spec, sorts them, selects a representive example
when there are multiple versions representing different alt_alleles, and
yields the example_variant field from those examples.
Args:
examples_path: str. Path, or sharded spec, to labeled tf.Examples produced
by DeepVariant in training mode.
max_records: int or None. Maximum number of records to read, or None, to
read all of the records.
Yields:
nucleus.protos.Variant protos in coordinate-sorted order.
Raises:
ValueError: if we find a Variant in any example that doesn't have genotypes.
"""
examples = tfrecord.read_tfrecords(examples_path, max_records=max_records)
variants_and_labels = sorted(
(
(dv_utils.example_variant(example), dv_utils.example_label(example))
for example in examples
),
key=lambda x: variant_utils.variant_range_tuple(x[0]),
)
for _, group in itertools.groupby(
variants_and_labels, lambda x: variant_utils.variant_range_tuple(x[0])
):
(variant, label) = next(group)
if not variantcall_utils.has_genotypes(variant_utils.only_call(variant)):
if label is not None:
logging.log_every_n(
logging.INFO,
'Variant in the example does not have GT. Use label to fill GT.',
_LOG_EVERY.value,
)
if label == 0:
gt = (0, 0)
if label == 1:
gt = (0, 1)
if label == 2:
gt = (1, 1)
call = variant.calls[0] if variant.calls else variant.calls.add()
variantcall_utils.set_gt(call, gt)
elif _ALLOW_UNLABELED_EXAMPLES.value:
call = variant.calls[0] if variant.calls else variant.calls.add()
variantcall_utils.set_gt(call, (-1, -1))
else:
raise ValueError(
(
'Variant {} does not have any genotypes. This tool only works '
'with variants that have been labeled.'
).format(variant_utils.variant_key(variant))
)
yield variant
def peek_sample_name(variants_iter):
"""Gets the call_set_name from the first Variant of variants_iter.
Args:
variants_iter: iterable[nucleus.protos.Variant]. Our source of variants.
Returns:
tuple of (str, iterable[Variant]). The first element is the call_set_name of
the first variant of variants_iter, or 'UNKNOWN' if the iterable is empty.
The second is a new iterable that yields the same elements of variant_iter,
in the same order, which is necessary to return as we need to peek into
the original iterator.
"""
try:
first = next(variants_iter)
return first.calls[0].call_set_name, itertools.chain([first], variants_iter)
except StopIteration:
# No variants, just return a placeholder value.
return 'UNKNOWN', iter([])
def main(argv):
del argv
contigs = fasta.IndexedFastaReader(_REF.value).header.contigs
max_records = _MAX_RECORDS.value if _MAX_RECORDS.value >= 0 else None
variants_iter = examples_to_variants(_EXAMPLES.value, max_records=max_records)
if not _SAMPLE_NAME.value:
sample_name, variants_iter = peek_sample_name(variants_iter)
else:
sample_name = _SAMPLE_NAME.value
header = dv_vcf_constants.deepvariant_header(
contigs=contigs, sample_names=[sample_name]
)
with vcf.VcfWriter(_OUTPUT_VCF.value, header=header) as writer:
for variant in variants_iter:
variant.calls[0].call_set_name = sample_name
logging.log_every_n(
logging.INFO,
'Converted %s',
_LOG_EVERY.value,
variant_utils.variant_key(variant),
)
writer.write(variant)
if __name__ == '__main__':
flags.mark_flags_as_required([
'examples',
'ref',
'output_vcf',
])
app.run(main)