# Copyright 2017 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Utility functions for DeepVariant.
Started with a collection of utilities for working with the TF models. Now this
file includes broader utilities we use in DeepVariant.
"""
import json
from typing import Optional
from absl import logging
import numpy as np
import tensorflow as tf
from deepvariant.protos import deepvariant_pb2
from third_party.nucleus.io import sharded_file_utils
# TODO: this dep still uses CLIF.
from third_party.nucleus.io import tfrecord
from third_party.nucleus.protos import variants_pb2
from tensorflow.core.example import example_pb2
# Convert strings up to this length, then clip. We picked a number that
# was less than 1K, with a bit of extra space for the length element,
# to give enough space without overflowing to a larger multiple of 128.
STRING_TO_INT_MAX_CONTENTS_LEN = 1020
# This is the length of the resulting buffer (including the length entry).
STRING_TO_INT_BUFFER_LENGTH = STRING_TO_INT_MAX_CONTENTS_LEN + 1
def example_variant_type(example):
"""Gets the locus field from example as a string."""
return example.features.feature['variant_type'].int64_list.value[0]
def example_locus(example):
"""Gets the locus field from example as a string."""
return example.features.feature['locus'].bytes_list.value[0]
def example_alt_alleles_indices(example):
"""Gets an iterable of the alt allele indices in example."""
return deepvariant_pb2.CallVariantsOutput.AltAlleleIndices.FromString(
example.features.feature['alt_allele_indices/encoded'].bytes_list.value[0]
).indices
def example_alt_alleles(example, variant=None):
"""Gets a list of the alt alleles in example."""
variant = variant if variant else example_variant(example)
return [
variant.alternate_bases[i] for i in example_alt_alleles_indices(example)
]
def example_encoded_image(example):
"""Gets image field from example as a string."""
return example.features.feature['image/encoded'].bytes_list.value[0]
def example_variant(example):
"""Gets and decodes the variant field from example as a Variant."""
encoded = example.features.feature['variant/encoded'].bytes_list.value[0]
return variants_pb2.Variant.FromString(encoded)
def example_label(example: example_pb2.Example) -> Optional[int]:
"""Gets the label field from example as a string."""
if 'label' not in example.features.feature:
return None
return int(example.features.feature['label'].int64_list.value[0])
def example_denovo_label(example: example_pb2.Example) -> Optional[int]:
"""Gets the label field from example as a string.
Args:
example: A tf.Example containing DeepVariant example.
Returns:
De novo label for the example.
"""
if 'denovo_label' not in example.features.feature:
return None
return int(example.features.feature['denovo_label'].int64_list.value[0])
def example_image_shape(example):
"""Gets the image shape field from example as a list of int64."""
if len(example.features.feature['image/shape'].int64_list.value) != 3:
raise ValueError(
'Invalid image/shape: we expect to find an image/shape '
'field with length 3.'
)
return example.features.feature['image/shape'].int64_list.value[0:3]
def example_key(example):
"""Constructs a key for example based on its position and alleles."""
variant = example_variant(example)
alts = example_alt_alleles(example)
return '{}:{}:{}->{}'.format(
variant.reference_name,
variant.start + 1,
variant.reference_bases,
'/'.join(alts),
)
def example_set_label(example, numeric_label):
"""Sets the label features of example.
Sets the label feature of example to numeric_label.
Args:
example: A tf.Example proto.
numeric_label: A numeric (int64 compatible) label for example.
"""
example.features.feature['label'].int64_list.value[:] = [numeric_label]
def example_set_denovo_label(
example: example_pb2.Example, numeric_label: int
) -> None:
"""Sets the denovo label features of example.
Sets the label feature of example to numeric_label.
Args:
example: a tf.Example proto.
numeric_label: A numeric (int64 compatible) label for example.
"""
example.features.feature['denovo_label'].int64_list.value[:] = [numeric_label]
def example_set_variant(example, variant):
"""Sets the variant/encoded feature of example to variant.SerializeToString().
Args:
example: a tf.Example proto.
variant: third_party.nucleus.protos.Variant protobuf containing information
about a candidate variant call.
"""
example.features.feature['variant/encoded'].bytes_list.value[:] = [
variant.SerializeToString()
]
def example_sequencing_type(example):
return example.features.feature['sequencing_type'].int64_list.value[0]
def get_one_example_from_examples_path(source, proto=None):
"""Get the first record from `source`.
Args:
source: str. A pattern or a comma-separated list of patterns that represent
file names.
proto: A proto class. proto.FromString() will be called on each serialized
record in path to parse it.
Returns:
The first record, or None.
"""
files = sharded_file_utils.glob_list_sharded_file_patterns(source)
if not files:
raise ValueError(
'Cannot find matching files with the pattern "{}"'.format(source)
)
for f in files:
try:
compression_type = 'GZIP' if 'tfrecord.gz' in f else None
return next(
tfrecord.read_tfrecords(
f, proto=proto, compression_type=compression_type
)
)
except StopIteration:
# Getting a StopIteration from one next() means source_path is empty.
# Move on to the next one to try to get one example.
pass
return None
def get_shape_from_examples_path(source):
"""Reads one record from source to determine the tensor shape for all."""
one_example = get_one_example_from_examples_path(source)
if one_example:
return example_image_shape(one_example)
return None
def _simplify_variant(variant):
"""Returns a new Variant with only the basic fields of variant."""
def _simplify_variant_call(call):
"""Returns a new VariantCall with the basic fields of call."""
return variants_pb2.VariantCall(
call_set_name=call.call_set_name,
genotype=call.genotype,
info=dict(call.info),
) # dict() is necessary to actually set info.
return variants_pb2.Variant(
reference_name=variant.reference_name,
start=variant.start,
end=variant.end,
reference_bases=variant.reference_bases,
alternate_bases=variant.alternate_bases,
filter=variant.filter,
quality=variant.quality,
calls=[_simplify_variant_call(call) for call in variant.calls],
)
def model_shapes(checkpoint_path, variables_to_get=None):
"""Returns the shape of each tensor in the model at checkpoint_path.
Args:
checkpoint_path: string. The path to a tensorflow checkpoint containing a
model whose tensor shapes we want to get.
variables_to_get: options, list of strings. If provided, only returns the
shapes of tensors in variables whose name is present in this list. If
None, the default, gets all of the tensors. A KeyError will be raised if
any variable name in variables_to_get isn't present in the checkpointed
model.
Returns:
A dictionary mapping variable names [string] to tensor shapes [tuple].
"""
reader = tf.compat.v1.train.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
keys = variables_to_get if variables_to_get else var_to_shape_map.keys()
return {key: tuple(var_to_shape_map[key]) for key in keys}
def model_num_classes(checkpoint_path, n_classes_model_variable):
"""Returns the number of classes in the checkpoint."""
if not checkpoint_path:
return None
# Figure out how many classes this inception model was trained to predict.
try:
shapes = model_shapes(checkpoint_path, [n_classes_model_variable])
except KeyError:
return None
if n_classes_model_variable not in shapes:
return None
return shapes[n_classes_model_variable][-1]
def string_to_int_tensor(x):
"""Graph operations decode a string into a fixed-size tensor of ints."""
decoded = tf.compat.v1.decode_raw(x, tf.uint8)
clipped = decoded[:STRING_TO_INT_MAX_CONTENTS_LEN] # clip to allowed max_len
shape = tf.shape(input=clipped)
slen = shape[0]
# pad to desired max_len
padded = tf.pad(
tensor=clipped, paddings=[[0, STRING_TO_INT_MAX_CONTENTS_LEN - slen]]
)
casted = tf.cast(padded, tf.int32)
casted.set_shape([STRING_TO_INT_MAX_CONTENTS_LEN])
return tf.concat([[slen], casted], 0)
def int_tensor_to_string(x):
"""Python operations to encode a tensor of ints into string of bytes."""
slen = x[0]
v = x[1 : slen + 1]
return np.array(v, dtype=np.uint8).tostring()
def compression_type_of_files(files):
"""Return GZIP or None for the compression type of the files."""
return 'GZIP' if all(f.endswith('.gz') for f in files) else None
def tpu_available(sess=None):
"""Return true if a TPU device is available to the default session."""
if sess is None:
init_op = tf.group(
tf.compat.v1.global_variables_initializer(),
tf.compat.v1.local_variables_initializer(),
)
with tf.compat.v1.Session() as sess:
sess.run(init_op)
devices = sess.list_devices()
else:
devices = sess.list_devices()
return any(dev.device_type == 'TPU' for dev in devices)
def resolve_master(master, tpu_name, tpu_zone, gcp_project):
"""Resolve the master's URL given standard flags."""
if master is not None:
return master
elif tpu_name is not None:
return tf.distribute.cluster_resolver.TPUClusterResolver(
tpu=[tpu_name], zone=tpu_zone, project=gcp_project
).get_master()
else:
# For k8s TPU we do not have/need tpu_name. See
# https://cloud.google.com/tpu/docs/kubernetes-engine-setup#tensorflow-code
return tf.distribute.cluster_resolver.TPUClusterResolver().get_master()
def get_example_info_json_filename(
examples_filename: str, task_id: Optional[int]
) -> str:
"""Returns corresponding example_info.json filename for examples_filename."""
if sharded_file_utils.is_sharded_file_spec(examples_filename):
assert task_id is not None
# If examples_filename has the @shards representation, resolve it into
# the first shard. We only write .example_info.json to the first shard.
example_info_prefix = sharded_file_utils.sharded_filename(
examples_filename, task_id
)
else:
# In all other cases, including non-sharded files,
# or sharded filenames with -ddddd-of-ddddd, just append.
example_info_prefix = examples_filename
return example_info_prefix + '.example_info.json'
def get_shape_and_channels_from_json(example_info_json):
"""Returns the shape and channels list from the input json."""
if not tf.io.gfile.exists(example_info_json):
logging.warning(
(
'Starting from v1.4.0, we expect %s to '
'include information for shape and channels.'
),
example_info_json,
)
return None, None
with tf.io.gfile.GFile(example_info_json) as f:
example_info = json.load(f)
example_shape = example_info['shape']
example_channels_enum = example_info['channels']
logging.info(
'From %s: Shape of input examples: %s, Channels of input examples: %s.',
example_info_json,
str(example_shape),
str(example_channels_enum),
)
return example_shape, example_channels_enum
def get_tf_record_writer(output_filename: str) -> tf.io.TFRecordWriter:
tf_options = None
if output_filename.endswith('.gz'):
tf_options = tf.io.TFRecordOptions(compression_type='GZIP')
return tf.io.TFRecordWriter(output_filename, options=tf_options)
def preprocess_images(images):
"""Applies preprocessing operations for Inception images.
Because this will run in model_fn, on the accelerator, we use operations
that efficiently execute there.
Args:
images: A Tensor of shape [batch_size height, width, channel] with uint8
values.
Returns:
A tensor of images of shape [batch_size height, width, channel]
containing floating point values, with all points rescaled between
-1 and 1 and possibly resized.
"""
images = tf.cast(images, dtype=tf.float32)
images = tf.subtract(images, 128.0)
images = tf.math.divide(images, 128.0)
return images