[9b26b7]: / deepvariant / allelecounter.cc

Download this file

912 lines (846 with data), 37.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/*
* Copyright 2017 Google LLC.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
// Implementation of allelecounter.h.
#include "deepvariant/allelecounter.h"
#include <algorithm>
#include <cstddef>
#include <iomanip>
#include <iterator>
#include <map>
#include <memory>
#include <optional>
#include <ostream>
#include <string>
#include <string_view>
#include <utility>
#include <vector>
#include "deepvariant/protos/deepvariant.pb.h"
#include "deepvariant/utils.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "third_party/nucleus/protos/cigar.pb.h"
#include "third_party/nucleus/protos/position.pb.h"
#include "third_party/nucleus/util/utils.h"
#include "absl/log/log.h"
namespace learning {
namespace genomics {
namespace deepvariant {
// Separator string that will appear between the fragment name and read number
// the string key constructed from a Read with ReadKey().
static constexpr char kFragmentNameReadNumberSeparator[] = "/";
using absl::string_view;
using absl::StrCat;
using nucleus::GenomeReference;
using nucleus::genomics::v1::CigarUnit;
using nucleus::genomics::v1::LinearAlignment;
using nucleus::genomics::v1::Range;
using nucleus::genomics::v1::Read;
// TODO Consolidate SumAlleleCounts functions into one since the
// functionality is identical.
std::vector<Allele> SumAlleleCounts(const AlleleCount& allele_count,
bool include_low_quality) {
std::map<std::pair<string_view, AlleleType>, int> allele_sums;
for (const auto& entry : allele_count.read_alleles()) {
if (include_low_quality || !entry.second.is_low_quality()) {
++allele_sums[{entry.second.bases(), entry.second.type()}];
}
}
std::vector<Allele> to_return;
to_return.reserve(allele_sums.size());
for (const auto& entry : allele_sums) {
to_return.push_back(
MakeAllele(entry.first.first, entry.first.second, entry.second));
}
// TODO SumAlleleCounts is only used in one place in variant_calling.cc
// where ref alleles are filtered out. The code below is redundant.
// Verify that there are no other usages of ref alleles and remove this code.
//
// Creates a synthetic reference Allele if we saw any reference containing
// alleles, whose count is tracked (for performance reasons) as an integer
// in the AlleleCount.ref_supporting_read_count field of the proto. This
// synthetic allele allows us to provide the same API from this function: a
// vector of the Alleles observed in allele_count without having to track the
// read names for reference containing reads, which is very memory-intensive.
if (allele_count.ref_supporting_read_count() > 0 &&
!allele_count.track_ref_reads()) {
to_return.push_back(MakeAllele(allele_count.ref_base(),
AlleleType::REFERENCE,
allele_count.ref_supporting_read_count()));
}
return to_return;
}
std::vector<Allele> SumAlleleCounts(
const std::vector<AlleleCount>& allele_counts, bool include_low_quality) {
std::map<std::pair<string_view, AlleleType>, int> allele_sums;
for (const AlleleCount& allele_count : allele_counts) {
for (const auto& entry : allele_count.read_alleles()) {
if (include_low_quality || !entry.second.is_low_quality()) {
++allele_sums[{entry.second.bases(), entry.second.type()}];
}
}
}
std::vector<Allele> to_return;
to_return.reserve(allele_sums.size());
for (const auto& entry : allele_sums) {
to_return.push_back(
MakeAllele(entry.first.first, entry.first.second, entry.second));
}
// TODO SumAlleleCounts is only used in one place in variant_calling.cc
// where ref alleles are filtered out. The code below is redundant.
// Verify that there are no other usages of ref alleles and remove this code.
//
// Creates a synthetic reference Allele if we saw any reference containing
// alleles, whose count is tracked (for performance reasons) as an integer
// in the AlleleCount.ref_supporting_read_count field of the proto. This
// synthetic allele allows us to provide the same API from this function: a
// vector of the Alleles observed in allele_count without having to track the
// read names for reference containing reads, which is very memory-intensive.
int ref_support_for_all_samples = 0;
for (const AlleleCount& allele_count : allele_counts) {
ref_support_for_all_samples += allele_count.ref_supporting_read_count();
}
if (ref_support_for_all_samples > 0 && !allele_counts.empty() &&
!allele_counts[0].track_ref_reads()) {
to_return.push_back(MakeAllele(allele_counts[0].ref_base(),
AlleleType::REFERENCE,
ref_support_for_all_samples));
}
return to_return;
}
// TODO Consolidate TotalAlleleCounts functions into one since the
// functionality is identical.
// Allele counter tracks reads supporting alt alleles. Simple counter is used
// for ref supporting reads. If track_ref_reads flag is set then ref supporting
// reads are tracked as well but only for positions marked as potential
// candidates.
int TotalAlleleCounts(const AlleleCount& allele_count,
bool include_low_quality) {
int total_allele_counts = std::count_if(
allele_count.read_alleles().begin(), allele_count.read_alleles().end(),
[include_low_quality](google::protobuf::Map<string, Allele>::value_type e) {
return (!e.second.is_low_quality() || include_low_quality) &&
e.second.type() != AlleleType::REFERENCE;
});
total_allele_counts += allele_count.ref_supporting_read_count();
return total_allele_counts;
}
// Allele counter tracks reads supporting alt alleles. Simple counter is used
// for ref supporting reads. If track_ref_reads flag is set then ref supporting
// reads are tracked as well but only for positions marked as potential
// candidates.
int TotalAlleleCounts(const std::vector<AlleleCount>& allele_counts,
bool include_low_quality) {
int total_allele_count = 0;
for (const AlleleCount& allele_count : allele_counts) {
total_allele_count += std::count_if(
allele_count.read_alleles().begin(), allele_count.read_alleles().end(),
[include_low_quality](google::protobuf::Map<string, Allele>::value_type e) {
return (!e.second.is_low_quality() || include_low_quality) &&
e.second.type() != AlleleType::REFERENCE;
});
total_allele_count += allele_count.ref_supporting_read_count();
}
return total_allele_count;
}
// Returns false if any of the bases from offset to offset+len are canonical
// bases.
// If `keep_legacy_behavior` is set to true, this function will also return
// false when any of the bases in read from offset to offset + len is below
// the quality threshold.
//
// There is a separate bool output `is_low_quality`, which will be set to
// true if all the bases in read from offset to offset+len is lower than
// the quality threshold to be used for generating alleles for our counts.
bool CanBasesBeUsed(const nucleus::genomics::v1::Read& read, int offset,
int len, const AlleleCounterOptions& options,
bool& is_low_quality) {
CHECK_LE(offset + len, read.aligned_quality_size());
const int min_base_quality = options.read_requirements().min_base_quality();
int indel_base_quality = 0;
for (int i = 0; i < len; i++) {
indel_base_quality += read.aligned_quality(offset + i);
if (read.aligned_quality(offset + i) < min_base_quality &&
options.keep_legacy_behavior()) {
return false;
}
if (!nucleus::IsCanonicalBase(read.aligned_sequence()[offset + i])) {
return false;
}
}
is_low_quality = false;
if (!options.keep_legacy_behavior()) {
if (indel_base_quality < min_base_quality * len) {
is_low_quality = true;
}
}
return true;
}
bool allele_pos_cmp(const AlleleCount& allele_count, int64_t pos) {
return allele_count.position().position() < pos;
}
// Return the allele index by base position in allele_counts vector.
int AlleleIndex(const std::vector<AlleleCount>& allele_counts, int64_t pos) {
auto idx = std::lower_bound(allele_counts.begin(), allele_counts.end(), pos,
allele_pos_cmp);
if (idx == allele_counts.end() || idx->position().position() != pos) {
return -1;
}
return std::distance(allele_counts.begin(), idx);
}
void AlleleCounter::Init() {
// Initialize our counts vector of AlleleCounts with proper position and
// reference base information. Initially the alleles repeated field is empty.
const int64_t len = IntervalLength();
counts_.reserve(len);
// Set candidate positions relative to the interval.
for (auto& candidate_position : candidate_positions_) {
candidate_position -= interval_.start();
}
auto full_interval_offset = interval_.start() - reads_interval_.start();
for (int i = 0; i < len; ++i) {
AlleleCount allele_count;
const int64_t pos = interval_.start() + i;
*(allele_count.mutable_position()) =
nucleus::MakePosition(interval_.reference_name(), pos);
allele_count.set_ref_base(ref_bases_.substr(i + full_interval_offset, 1));
allele_count.set_track_ref_reads(options_.track_ref_reads());
counts_.push_back(allele_count);
}
}
// AlleleCounter objects are passed to Python by pointers. We need to return
// a raw pointer here in order to test a Python specific API.
AlleleCounter* AlleleCounter::InitFromAlleleCounts(
const std::vector<AlleleCount>& allele_counts) {
auto allele_counter = new AlleleCounter();
allele_counter->counts_.assign(allele_counts.begin(), allele_counts.end());
return allele_counter;
}
// This constructor is only used for unit testing, therefore it is defined as
// private.
AlleleCounter::AlleleCounter() : ref_(nullptr) {}
AlleleCounter::AlleleCounter(const GenomeReference* const ref,
const Range& range,
const nucleus::genomics::v1::Range& full_range,
const std::vector<int>& candidate_positions,
const AlleleCounterOptions& options)
: ref_(ref),
interval_(range),
reads_interval_(full_range),
candidate_positions_(candidate_positions),
options_(options),
ref_bases_(ref_->GetBases(full_range).ValueOrDie()) {
Init();
}
AlleleCounter::AlleleCounter(const GenomeReference* const ref,
const Range& range,
const std::vector<int>& candidate_positions,
const AlleleCounterOptions& options)
: ref_(ref),
interval_(range),
reads_interval_(range),
candidate_positions_(candidate_positions),
options_(options),
ref_bases_(ref_->GetBases(range).ValueOrDie()) {
Init();
}
string AlleleCounter::RefBases(const int64_t rel_start, const int64_t len) {
CHECK_GT(len, 0) << "Length must be >= 1";
// If our region isn't valid (e.g., it is off the end of the chromosome),
// return an empty string, otherwise get the actual bases from reference.
const int abs_start = reads_interval_.start() + rel_start;
const Range region = nucleus::MakeRange(reads_interval_.reference_name(),
abs_start, abs_start + len);
if (!ref_->IsValidInterval(region)) {
return "";
} else {
return ref_->GetBases(region).ValueOrDie();
}
}
string AlleleCounter::GetPrevBase(const Read& read, const int read_offset,
const int interval_offset) {
CHECK_GE(read_offset, 0) << "read_offset should be 0 or greater";
if (read_offset == 0) {
// The read_offset case is here to handle the case where the insertion/
// deletion/soft_clip is the first cigar element of the read, and there's no
// previous base in the read, and so we take our previous base from the
// reference genome instead.
return RefBases(interval_offset - 1, 1);
} else {
// In all other cases we actually take our previous base from the read
// itself.
return read.aligned_sequence().substr(read_offset - 1, 1);
}
}
ReadAllele AlleleCounter::MakeIndelReadAllele(const Read& read,
const int interval_offset,
const int ref_offset,
const int read_offset,
const CigarUnit& cigar) {
const int op_len = cigar.operation_length();
const string prev_base = GetPrevBase(read, read_offset, ref_offset);
bool is_low_quality_read_allele = false;
if (prev_base.empty() || !nucleus::AreCanonicalBases(prev_base) ||
(cigar.operation() != CigarUnit::DELETE &&
!CanBasesBeUsed(read, read_offset, op_len, options_,
is_low_quality_read_allele))) {
// There is no prev_base (we are at the start of the contig), or the bases
// are unusable, so don't actually add the indel allele.
return ReadAllele();
}
AlleleType type;
string bases;
switch (cigar.operation()) {
case CigarUnit::DELETE:
type = AlleleType::DELETION;
bases = RefBases(ref_offset, op_len);
if (bases.empty()) {
// We couldn't get the ref bases for the deletion (which can happen if
// the deletion spans off the end of the contig), so abort now without
// considering this read any longer. It's rare but such things happen in
// genomes but they do occur in practice, such as when: (1) the reads
// spans off the chromosome, but because there's more sequence there
// (the chromosome isn't complete), which means the read can have
// whatever CIGAR it likes, which may include a deletion; (2) the
// chromosome is actually circular, and the aligner is clever enough to
// know that, and the read's cigar reflect true differences of the read
// to the alignment at the start of the contig. Nasty, I know.
VLOG(2) << "Deletion spans off the chromosome for read: "
<< read.ShortDebugString() << " at cigar "
<< cigar.ShortDebugString() << " with interval "
<< Interval().ShortDebugString() << " with interval_offset "
<< interval_offset << " and read_offset " << read_offset;
return ReadAllele();
}
if (!nucleus::AreCanonicalBases(bases)) {
// The reference genome has non-canonical bases that are being deleted.
// We don't add deletions with non-canonical bases so we return an empty
// ReadAllele().
return ReadAllele();
}
break;
case CigarUnit::INSERT:
type = AlleleType::INSERTION;
bases = read.aligned_sequence().substr(read_offset, op_len);
break;
case CigarUnit::CLIP_SOFT:
type = AlleleType::SOFT_CLIP;
bases = read.aligned_sequence().substr(read_offset, op_len);
break;
default:
LOG(FATAL) << "Unexpected cigar operation: " << cigar.DebugString();
}
return ReadAllele(interval_offset - 1, StrCat(prev_base, bases), type,
is_low_quality_read_allele);
}
void AlleleCounter::AddReadAlleles(const Read& read, absl::string_view sample,
const std::vector<ReadAllele>& to_add) {
for (size_t i = 0; i < to_add.size(); ++i) {
const ReadAllele& to_add_i = to_add[i];
// The read can span beyond and after the interval, so don't add counts
// outside our interval boundaries.
if (to_add_i.skip() || !IsValidIntervalOffset(to_add_i.position())) {
continue;
}
// If sequential alleles have the same position, skip the first one. This
// occurs, for example, when we observe a base at position p on the genome
// which is enqueued as the ith element of our to_add vector. But the next
// allele is an indel allele which, because of VCF convention, occurs at
// position p, is enqueued at i+1 and supersedes the previous base
// substitution. Resolving these conflicts here allows us to keep the
// Read => ReadAllele algorithm logic simple.
if (i + 1 < to_add.size() &&
to_add_i.position() == to_add[i + 1].position()) {
continue;
}
AlleleCount& allele_count = counts_[to_add_i.position()];
if (to_add_i.type() == AlleleType::REFERENCE) {
if (!to_add_i.is_low_quality()) {
const int prev_count = allele_count.ref_supporting_read_count();
allele_count.set_ref_supporting_read_count(prev_count + 1);
}
}
// Always create non reference alleles.
// Reference alleles are created only when the track_ref_reads flag is set
// and we know that this position contains a potential candidate.
if (to_add_i.type() != AlleleType::REFERENCE ||
(options_.track_ref_reads() &&
std::binary_search(candidate_positions_.begin(),
candidate_positions_.end(), to_add_i.position()))) {
auto* read_alleles = allele_count.mutable_read_alleles();
auto* sample_alleles = allele_count.mutable_sample_alleles();
const string key = ReadKey(read);
const Allele allele = MakeAllele(to_add_i.bases(), to_add_i.type(), 1,
to_add_i.is_low_quality());
// Naively, there should never be multiple counts for the same read key.
// We detect such a situation here but only write out a warning. It would
// be better to have a stronger response (FATAL), but unfortunately we see
// data in the wild that we need to process that has duplicates.
if (read_alleles->count(key)) {
// Not thread safe.
static int counter = 0;
if (counter++ < 1) {
VLOG(2) << "Found duplicate read: " << key << " at "
<< allele_count.position().ShortDebugString();
}
}
(*read_alleles)[key] = allele;
// Update sample to allele map. This may allows us to determine set of
// samples that support each allele.
Allele* new_allele = (*sample_alleles)[std::string(sample)].add_alleles();
*new_allele = allele;
}
}
}
// Convenience function to check if operations is match. Note, that we treat
// SEQUENCE_MISMATCH as ALIGNMENT_MATCH.
bool IsOperationMatch(const nucleus::genomics::v1::CigarUnit& op) {
return (op.operation() == CigarUnit::ALIGNMENT_MATCH ||
op.operation() == CigarUnit::SEQUENCE_MATCH ||
op.operation() == CigarUnit::SEQUENCE_MISMATCH);
}
// Merge two operations. If operations are the same type then first operation's
// length is icreased and second operation length's is set to zero. If
// operations are different types then M operation of length MIN(op1, op2) is
// added instead of op1. Op2 is converted to the type of a larger operation
// and length is set to Max(op) - Min(op).
// Function returns true if operations are merged.
bool MergeOperations(nucleus::genomics::v1::CigarUnit& op1,
nucleus::genomics::v1::CigarUnit& op2) {
// Simple merge if operations are of the same type. There are three different
// types of "match" operation therefore it is not enough to just compare
// operation types.
if (op1.operation() == op2.operation() ||
(IsOperationMatch(op1) && IsOperationMatch(op2))) {
op1.set_operation_length(op1.operation_length() + op2.operation_length());
op2.set_operation_length(0);
} else if ((op1.operation() == CigarUnit::DELETE ||
op1.operation() == CigarUnit::INSERT) &&
(op2.operation() == CigarUnit::DELETE ||
op2.operation() == CigarUnit::INSERT)) {
auto min_indel_len =
std::min(op1.operation_length(), op2.operation_length());
auto new_indel_len =
std::max(op1.operation_length(), op2.operation_length()) -
min_indel_len;
if (op1.operation_length() > op2.operation_length()) {
op2.set_operation(op1.operation());
}
op1.set_operation(CigarUnit::ALIGNMENT_MATCH);
op1.set_operation_length(min_indel_len);
op2.set_operation_length(new_indel_len);
} else {
return false;
}
return true;
}
// Advance reference and read pointers depending on the cigar operation and
// its length.
void AdvanceReadReferencePointers(
int increment, const nucleus::genomics::v1::CigarUnit_Operation& operation,
int& read_offset, int& ref_offset) {
switch (operation) {
case CigarUnit::ALIGNMENT_MATCH:
case CigarUnit::SEQUENCE_MATCH:
case CigarUnit::SEQUENCE_MISMATCH:
read_offset += increment;
ref_offset += increment;
break;
case CigarUnit::CLIP_SOFT:
case CigarUnit::INSERT:
read_offset += increment;
// No interval offset change, since an insertion doesn't move us on ref.
break;
case CigarUnit::DELETE:
case CigarUnit::PAD:
case CigarUnit::SKIP:
// No read offset change, since a del/pad/skip don't consume read bases.
ref_offset += increment;
break;
case CigarUnit::CLIP_HARD:
break;
default:
// Lots of misc. enumerated values from proto that aren't useful such as
// enumeration values INT_MIN_SENTINEL_DO_NOT_USE_ and
// OPERATION_UNSPECIFIED.
break;
}
}
// Handle the case when INDEL is at the head of a cigar.
// DEL is removed and alignment position is shifted to the right.
// INS is converted into a REF and alignment position is shifted to the left.
int HandleHeadingIndel(
std::vector<nucleus::genomics::v1::CigarUnit>::iterator it,
std::vector<nucleus::genomics::v1::CigarUnit>& norm_cigar) {
int read_alignment_shift = 0;
// it must be a first operation or the first op following soft clip.
CHECK(it == norm_cigar.begin() ||
(!norm_cigar.empty() &&
norm_cigar.begin()->operation() == CigarUnit::CLIP_SOFT &&
it == norm_cigar.begin() + 1));
if (it->operation() == CigarUnit::DELETE) {
read_alignment_shift = it->operation_length();
norm_cigar.erase(it);
} else if (it->operation() == CigarUnit::INSERT) {
read_alignment_shift = -it->operation_length();
it->set_operation(CigarUnit::ALIGNMENT_MATCH);
}
return read_alignment_shift;
}
// Shift cigar operation according to the shift parameter. Only INDELs are
// shifted and only to the left. It is expected that operation to the left is
// REF or SOFT_CLIP or there is no operation. Operation to the left is decreased
// in length, operation to the right is increased in length. If there is no
// operation to the right REF is created.
int ShiftOperation(int shift,
std::vector<nucleus::genomics::v1::CigarUnit>::iterator it,
std::vector<nucleus::genomics::v1::CigarUnit>& norm_cigar) {
// If previous operation is ref or soft clip then it is reduced in length.
// If it is the first operation then read alignment is shifted. In this case
// it is removed if it is del or turned into ref if it is ins.
int read_alignment_shift = 0;
// If indel is first operation or second after a soft clip then indel is
// treated specially.
if (it == norm_cigar.begin() ||
(!norm_cigar.empty() && it == norm_cigar.begin() + 1 &&
norm_cigar.begin()->operation() == CigarUnit::CLIP_SOFT)) {
return HandleHeadingIndel(it, norm_cigar);
} else {
auto prev_op = it - 1;
// Previous operation should not be a soft clip. Soft clip in the middle of
// cigar is an error in alignment. It should not happen.
CHECK(prev_op->operation() != CigarUnit::CLIP_SOFT);
if (IsOperationMatch(*prev_op)) {
CHECK(shift <= prev_op->operation_length());
prev_op->set_operation_length(prev_op->operation_length() - shift);
} else {
// Do nothing if prev operation is not REF.
return read_alignment_shift;
}
}
// Expand existing ref following it or add a new one if it is the last element
auto post_op = it + 1;
if (post_op == norm_cigar.end()) {
nucleus::genomics::v1::CigarUnit post_ref;
post_ref.set_operation_length(shift);
post_ref.set_operation(CigarUnit::ALIGNMENT_MATCH);
norm_cigar.insert(it + 1, post_ref);
} else {
post_op->set_operation_length(post_op->operation_length() + shift);
}
return read_alignment_shift;
}
// Iterate cigar operations and attempt merging adjacent operations of the same
// type or indels. Returns true of merging was done.
bool FindAndMergeOperations(
std::vector<nucleus::genomics::v1::CigarUnit>& norm_cigar) {
for (auto op = norm_cigar.begin(); op != norm_cigar.end(); op++) {
auto next_op = op + 1;
if (next_op != norm_cigar.end() && MergeOperations(*op, *next_op)) {
return true;
}
}
return false;
}
// Remove all zero length operations and merge operations that can be merged.
// Operations of the same type are merged by adding their lengths. If DEL and
// INS has to be merged then their overlapping part is converted to REF and
// non overlapping part is preserved.
// For example. 3D5I (3 del and 5 ins) is merged into 3M2I (3 ref and 2 ins).
// Return true if any change was made to the cigar.
bool SwipeAndMerge(std::vector<nucleus::genomics::v1::CigarUnit>& norm_cigar) {
// Repeat the loop until nothing is merged.
bool merged = true;
bool is_modified = false;
while (merged) {
merged = false;
// First remove all operations of length zero
auto before_size = norm_cigar.size();
norm_cigar.erase(
std::remove_if(norm_cigar.begin(), norm_cigar.end(),
[](const nucleus::genomics::v1::CigarUnit& op) {
return (op.operation_length() == 0);
}),
norm_cigar.end());
if (norm_cigar.size() < before_size) {
is_modified = true;
}
// Then merge operations that are mergable.
merged = FindAndMergeOperations(norm_cigar);
if (merged) {
is_modified = true;
}
} // while(merged)
return is_modified;
}
bool AlleleCounter::CanDelBeShifted(
const absl::string_view read_seq,
std::vector<nucleus::genomics::v1::CigarUnit>::const_iterator cigar_elt,
int read_offset,
int interval_offset,
int op_len) const {
if (cigar_elt->operation() != CigarUnit::DELETE) {
return false;
}
if (read_offset <= 0) {
return false;
}
if (interval_offset + op_len - 1 >= ref_bases_.size()) {
return false;
}
return read_seq[read_offset - 1] ==
ref_bases_[interval_offset + op_len - 1];
}
bool AlleleCounter::CanInsBeShifted(
const absl::string_view read_seq,
std::vector<nucleus::genomics::v1::CigarUnit>::const_iterator cigar_elt,
int read_offset,
int interval_offset,
int op_len) const {
if (cigar_elt->operation() != CigarUnit::INSERT) {
return false;
}
if (interval_offset <= 0) {
return false;
}
if (read_offset + op_len - 1 >= read_seq.size()) {
return false;
}
return read_seq[read_offset + op_len - 1] ==
ref_bases_[interval_offset - 1];
}
// Normalize cigar of a given read following
// https://genome.sph.umich.edu/wiki/Variant_Normalization. As a result
// alignment position may need to be adjusted, in this case read_shift parameter
// is set to a non-zero value. As a result of shifting indel operations
// sometimes merging of adjecent indels may be performed.
bool AlleleCounter::NormalizeCigar(
const absl::string_view read_seq, int interval_offset,
std::vector<nucleus::genomics::v1::CigarUnit>& norm_cigar,
int& read_shift) const {
bool is_modified = false;
read_shift = 0;
if (norm_cigar.empty()) {
return is_modified;
}
int iteration = 0; // while loop will run up to 10 times.
while (iteration++ < 10) {
int read_offset = 0;
int cur_interval_offset = interval_offset + read_shift;
// Iterate cigar operations and shift indels if possible
// If shift occurred break the loop and recalculate
int prev_op_len = norm_cigar.front().operation_length();
bool is_shifted = false;
for (auto cigar_elt = norm_cigar.begin(); cigar_elt != norm_cigar.end();
cigar_elt++) {
const int op_len = cigar_elt->operation_length();
int shift = 0;
if (cigar_elt->operation() == CigarUnit::INSERT ||
cigar_elt->operation() == CigarUnit::DELETE) {
// Move INS/DEL to the left until last base of INS/DEL is the same
// as REF base at the start of the operation. Moving left can only
// be done if cigar has a REF operation preceding the INS/DEL. By
// moving INS>DEL to the left we consume the length of a preceding
// REF operation.
while (prev_op_len > 0 &&
( CanDelBeShifted(read_seq, cigar_elt, read_offset,
cur_interval_offset, op_len) ||
CanInsBeShifted(read_seq, cigar_elt, read_offset,
cur_interval_offset, op_len))) {
cur_interval_offset--;
prev_op_len--;
read_offset--;
shift++;
}
if (shift > 0) {
read_shift += ShiftOperation(shift, cigar_elt, norm_cigar);
is_modified = true;
is_shifted = true;
break;
}
}
prev_op_len = cigar_elt->operation_length();
AdvanceReadReferencePointers(op_len, cigar_elt->operation(), read_offset,
cur_interval_offset);
} // for
// Input BAM may contain non-normalized records, therefore we try to
// SwipeAndMerge even if there was no shift.
bool is_merged = SwipeAndMerge(norm_cigar);
if (is_merged) {
is_modified = true;
}
if (!is_shifted && !is_merged) {
break;
}
} // while (iteration < 10)
// Call shift to deal with an indel at the beginning of cigar.
read_shift += HandleHeadingIndel(norm_cigar.begin(), norm_cigar);
return is_modified;
}
void AlleleCounter::NormalizeAndAdd(
const nucleus::genomics::v1::Read& read, absl::string_view sample,
std::unique_ptr<std::vector<nucleus::genomics::v1::CigarUnit>>& norm_cigar,
int& read_shift) {
// Make sure our incoming read has a mapping quality above our min. threshold.
if (read.alignment().mapping_quality() <
options_.read_requirements().min_mapping_quality()) {
return;
}
const LinearAlignment& aln = read.alignment();
std::vector<ReadAllele> to_add;
to_add.reserve(read.aligned_quality_size());
int interval_offset = aln.position().position() - ReadsInterval().start();
const string_view read_seq(read.aligned_sequence());
// Copy input cigar into the local variable since it can be modified.
std::vector<CigarUnit> input_output_cigar(aln.cigar().begin(),
aln.cigar().end());
bool is_modified =
NormalizeCigar(read_seq, interval_offset, input_output_cigar, read_shift);
if (is_modified) {
norm_cigar->assign(input_output_cigar.begin(), input_output_cigar.end());
}
Add(read, sample, &input_output_cigar, read_shift);
}
void AlleleCounter::Add(const nucleus::genomics::v1::Read& read,
absl::string_view sample,
const std::vector<CigarUnit>* cigar_to_use,
int read_shift) {
// Make sure our incoming read has a mapping quality above our min. threshold.
if (read.alignment().mapping_quality() <
options_.read_requirements().min_mapping_quality()) {
return;
}
const LinearAlignment& aln = read.alignment();
std::vector<ReadAllele> to_add;
to_add.reserve(read.aligned_quality_size());
int read_offset = 0;
int ref_interval_offset =
aln.position().position() + read_shift - ReadsInterval().start();
int interval_offset =
aln.position().position() + read_shift - Interval().start();
const string_view read_seq(read.aligned_sequence());
std::vector<CigarUnit> cigar;
if (cigar_to_use != nullptr) {
cigar.assign(cigar_to_use->begin(), cigar_to_use->end());
} else {
cigar.assign(aln.cigar().begin(), aln.cigar().end());
}
for (const auto& cigar_elt : cigar) {
const int op_len = cigar_elt.operation_length();
switch (cigar_elt.operation()) {
case CigarUnit::ALIGNMENT_MATCH:
case CigarUnit::SEQUENCE_MATCH:
case CigarUnit::SEQUENCE_MISMATCH:
for (int i = 0; i < op_len; ++i) {
const int ref_offset = ref_interval_offset + i;
const int base_offset = read_offset + i;
bool is_low_quality_read_allele = false;
if (IsValidRefOffset(ref_offset) &&
CanBasesBeUsed(read, base_offset, 1, options_,
is_low_quality_read_allele)) {
const AlleleType type =
ref_bases_[ref_offset] == read_seq[base_offset]
? AlleleType::REFERENCE
: AlleleType::SUBSTITUTION;
to_add.emplace_back(interval_offset + i,
string(read_seq.substr(base_offset, 1)), type,
is_low_quality_read_allele);
}
}
read_offset += op_len;
ref_interval_offset += op_len;
interval_offset += op_len;
break;
case CigarUnit::CLIP_SOFT:
case CigarUnit::INSERT:
// Note, by convention VCF insertion/deletion are at the preceding base.
to_add.push_back(MakeIndelReadAllele(read, interval_offset,
ref_interval_offset, read_offset,
cigar_elt));
read_offset += op_len;
// No interval offset change, since an insertion doesn't move us on ref.
break;
case CigarUnit::DELETE:
// By convention VCF insertion/deletion are at the preceding base.
to_add.push_back(MakeIndelReadAllele(read, interval_offset,
ref_interval_offset, read_offset,
cigar_elt));
// No read offset change, since a deletion doesn't consume read bases.
ref_interval_offset += op_len;
interval_offset += op_len;
break;
case CigarUnit::PAD:
case CigarUnit::SKIP:
// No read offset change, since a pad/skip don't consume read bases.
ref_interval_offset += op_len;
interval_offset += op_len;
break;
case CigarUnit::CLIP_HARD:
break;
default:
// Lots of misc. enumerated values from proto that aren't useful such as
// enumeration values INT_MIN_SENTINEL_DO_NOT_USE_ and
// OPERATION_UNSPECIFIED.
break;
}
}
AddReadAlleles(read, sample, to_add);
++n_reads_counted_;
}
string AlleleCounter::ReadKey(const Read& read) {
return StrCat(read.fragment_name(), kFragmentNameReadNumberSeparator,
read.read_number());
}
std::vector<AlleleCountSummary> AlleleCounter::SummaryCounts(
int left_padding, int right_padding) const {
std::vector<AlleleCountSummary> summaries;
CHECK_GE(left_padding, 0);
CHECK_GE(right_padding, 0);
CHECK_LT(left_padding + right_padding, counts_.size());
summaries.reserve(counts_.size() - left_padding - right_padding);
for (int i = left_padding; i < counts_.size() - right_padding; i++) {
const AlleleCount& allele_count = counts_[i];
AlleleCountSummary summary;
summary.set_reference_name(allele_count.position().reference_name());
summary.set_position(allele_count.position().position());
summary.set_ref_base(allele_count.ref_base());
summary.set_ref_supporting_read_count(
allele_count.ref_supporting_read_count());
summary.set_total_read_count(TotalAlleleCounts(allele_count));
summary.set_ref_nonconfident_read_count(
allele_count.ref_nonconfident_read_count());
summaries.push_back(summary);
}
return summaries;
}
} // namespace deepvariant
} // namespace genomics
} // namespace learning