[9b26b7]: / deepvariant / allele_frequency.py

Download this file

410 lines (346 with data), 15.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Copyright 2020 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Functionality for including allele frequencies in DeepVariant pileups."""
import collections
from typing import DefaultDict, Sequence, Optional
from absl import logging
from third_party.nucleus.io import vcf
from third_party.nucleus.util import ranges
from third_party.nucleus.util import variant_utils
from deepvariant.protos import deepvariant_pb2
def get_allele_frequency(variant, index):
"""Gets allele frequency of the index-th alt_base of a Variant proto.
Args:
variant: A Variant proto.
index: The index where we want to query allele frequency.
Returns:
A float. The queried allele frequency.
Raises:
ValueError: If the Variant proto does not include 'AF' field or the 'AF'
field encounters an out-of-bound error when querying at position `index`
"""
if variant.info.get('AF'):
if index < len(variant.info['AF'].values):
return variant.info['AF'].values[index].number_value
else:
raise ValueError(
'Invalid index',
index,
'for the info[AF] field',
variant.info['AF'].values,
)
raise ValueError('Variant does not have an AF field')
def get_ref_allele_frequency(variant):
"""Gets REF allele frequency for a Variant proto."""
sum_alt_frequency = 0
for alt_idx, _ in enumerate(variant.alternate_bases):
sum_alt_frequency += get_allele_frequency(variant, alt_idx)
return 1 - sum_alt_frequency
def get_ref_haplotype_and_offset(dv_variant, cohort_variants, ref_reader):
"""Gets reference haplotype that overlaps with given variants and its offset.
Reference offset is the starting position of the returned haplotype.
It is the minimal starting positions of dv_variant and cohort_variants.
Reference haplotype is the reference sequence from reference_offset to the
maximal ending position of dv_variant and cohort_variants.
Args:
dv_variant: A Variant proto.
cohort_variants: A list of Variant protos.
ref_reader: A fasta.IndexedFastaReader.
Returns:
A tuple of a string and an integer.
- String: Reference haplotype overlapping with dv_variant and
cohort_variants.
- Integer: Offset of the reference haplotype.
Raises:
ValueError: If the queried region is invalid.
"""
# Get the range for haplotypes to be compared.
min_start_position = min(
dv_variant.start, min([cv.start for cv in cohort_variants])
)
max_end_position = max(
dv_variant.end, max([cv.end for cv in cohort_variants])
)
haplotype_region = ranges.make_range(
dv_variant.reference_name, min_start_position, max_end_position
)
if ref_reader.is_valid(haplotype_region):
return ref_reader.query(haplotype_region), min_start_position
else:
raise ValueError('Invalid IndexedFastaReader region', haplotype_region)
def update_haplotype(variant, reference_haplotype, reference_offset):
"""Updates haplotypes for a variant.
A list of variant haplotypes are updated given a variant and a reference
haplotype (this consists of a sequence and an offset wrt to the reference).
All ALT alleles are updated as independent updated haplotypes.
Args:
variant: A Variant proto.
reference_haplotype: A string extracted from the reference genome.
reference_offset: An integer. The offset of the starting position of
reference_haplotype on reference.
Raises:
ValueError: Variant.start is smaller than reference_offset.
Returns:
A list of haplotype objects. Haplotype objects are stored as dicts:
{'haplotype': a haplotype (string),
'alt': an alt allele (string),
'variant': a Variant proto}
"""
if variant.start < reference_offset:
raise ValueError(
'The starting position of a variant is smaller than its ',
'corresponding reference offset',
variant.start,
reference_offset,
)
offset_start = variant.start - reference_offset
offset_suffix = (
variant.start + len(variant.reference_bases) - reference_offset
)
list_updated_haplotype = []
for biallelic_variant in variant.alternate_bases:
updated_haplotype = (
reference_haplotype[:offset_start]
+ biallelic_variant
+ reference_haplotype[offset_suffix:]
)
dict_haplotype = {
'haplotype': updated_haplotype,
'alt': biallelic_variant,
'variant': variant,
}
list_updated_haplotype.append(dict_haplotype)
return list_updated_haplotype
def match_candidate_and_cohort_haplotypes(
candidate_haps, cohort_haps_and_freqs
):
"""Match candidate haplotypes with cohort haplotypes and update frequency.
First, we look for exact haplotype matches between candidate and cohorts.
If there're any matches, the REF allele frequency associated with the matching
ALT allele is updated as well.
Second, if no matches are found, we try to find inexact matches, where only
REF alleles are matched. The inexact matching step is only used to update REF
allele frequency. If no exact and inexact matches are found, set REF allele
frequency to 1.
Args:
candidate_haps: A list of haplotype objects from a candidate.
cohort_haps_and_freqs: A list of haplotype objects from cohorts. Haplotype
objects are stored as dicts: {'haplotype': a haplotype (string), 'alt': an
alt allele (string), 'variant': a Variant proto}
Returns:
A dict with candidate alt alleles as keys, and associated frequencies
as values.
"""
dict_allele_frequency = {}
for candidate_obj in candidate_haps:
candidate_haplotype = candidate_obj['haplotype']
candidate_alt = candidate_obj['alt']
candidate_variant = candidate_obj['variant']
for cohort_obj in cohort_haps_and_freqs:
cohort_haplotype = cohort_obj['haplotype']
# Exact haplotype match.
if candidate_haplotype == cohort_haplotype:
cohort_variant = cohort_obj['variant']
cohort_frequency = get_allele_frequency(
cohort_variant,
list(cohort_variant.alternate_bases).index(cohort_obj['alt']),
)
dict_allele_frequency[candidate_alt] = cohort_frequency
# Update REF frequency if it is not in the dictionary.
if not dict_allele_frequency.get(candidate_variant.reference_bases):
dict_allele_frequency[candidate_variant.reference_bases] = (
get_ref_allele_frequency(cohort_variant)
)
# For an unmatched alt allele, set the frequency to 0.
if not dict_allele_frequency.get(candidate_alt):
dict_allele_frequency[candidate_alt] = 0
# Calculate REF allele frequency if no exact match was found.
# It is possible a novel mutation happens at a site where there are other
# cohort variants. In this case, we cannot simply set REF frequency to 1.
if sum(dict_allele_frequency.values()) == 0:
candidate = candidate_haps[0]['variant']
# Left align variants.
s_candidate = variant_utils.simplify_variant_alleles(candidate)
for cohort_obj in cohort_haps_and_freqs:
s_cohort_variant = variant_utils.simplify_variant_alleles(
cohort_obj['variant']
)
# Try to find inexact matches to set REF allele frequency.
# Inexact matches here mean only REF alleles match.
if (
s_candidate.start == s_cohort_variant.start
and s_candidate.reference_bases == s_cohort_variant.reference_bases
):
dict_allele_frequency[s_candidate.reference_bases] = (
get_ref_allele_frequency(s_cohort_variant)
)
# If still no match, set REF allele frequency to 1.
if not dict_allele_frequency.get(candidate.reference_bases):
dict_allele_frequency[candidate.reference_bases] = 1
return dict_allele_frequency
def find_matching_allele_frequency(
variant, population_vcf_reader, ref_reader, padding_bases=0
):
"""Finds the allele frequencies of all the alt alleles for a candidate.
Args:
variant: A Variant proto generated by make_examples. Note that it can be
multi-allelic.
population_vcf_reader: A VcfReader object that reads associated VCF file for
a candidate. We want to extract allele frequency information in the VCF.
ref_reader: A IndexedFastaReader object that reads the reference FASTA.
padding_bases: An integer that specifies the number of padding bases added
when performing a VCF query. By default it is set to 0.
Returns:
A dict with alleles as keys, and allele frequencies as values
"""
query_region = ranges.make_range(
chrom=variant.reference_name,
start=variant.start - padding_bases,
end=variant.end + padding_bases,
)
# Convert to list because we'll look through cohort_variants more than once.
cohort_variants = list(population_vcf_reader.query(query_region))
# Init allele frequency dict using alt bases in the candidate.
dict_allele_frequency = {}
for alt_base in variant.alternate_bases:
dict_allele_frequency[alt_base] = 0
try:
reference_haplotype, reference_offset = get_ref_haplotype_and_offset(
variant, cohort_variants, ref_reader
)
except ValueError:
# If the range associated with variant and cohort_variants is invalid,
# assume this candidate does not have any ALT alleles.
dict_allele_frequency = {}
dict_allele_frequency[variant.reference_bases] = 1
for alt in variant.alternate_bases:
dict_allele_frequency[alt] = 0
return dict_allele_frequency
candidate_haps = update_haplotype(
variant, reference_haplotype, reference_offset
)
cohort_haps = []
for cohort_variant in cohort_variants:
cohort_haps.extend(
update_haplotype(cohort_variant, reference_haplotype, reference_offset)
)
for c in candidate_haps:
logging.debug('candidate %s, %s', c['haplotype'], c['alt'])
for c in cohort_haps:
logging.debug('cohort %s, %s', c['haplotype'], c['alt'])
dict_allele_frequency = match_candidate_and_cohort_haplotypes(
candidate_haps, cohort_haps
)
if dict_allele_frequency:
logging.vlog(
3,
'dict_allele_frequency: %s:%d-%d, %s > %s',
variant.reference_name,
variant.start,
variant.end,
variant.reference_bases,
dict_allele_frequency,
)
return dict_allele_frequency
def make_population_vcf_readers(
population_vcf_filenames: Sequence[str],
) -> DefaultDict[str, Optional[vcf.VcfReader]]:
"""Creates VcfReaders for the given VCF file paths, organized by reference.
VcfReaders can be made either from a single VCF that covers all the relevant
reference sequences or strictly one VCF per reference sequence. By returning
a defaultdict, any code using the output of this function does not have to
consider whether there are multiple VCFs or not, it can simply query by
chromosome and get a reader.
Args:
population_vcf_filenames: Paths to files (VCF or VCF.gz) with population
genotypes.
Raises:
ValueError: If there is more than one VCF file containing variants
from the same chromosome.
Returns:
A defaultdict that maps from a reference name to an associated VcfReader.
If there was only one VCF provided, all references will map to that one
reader. If more than one VCF was provided, the references will have a
reader each, while any that were not included will map to None.
"""
# If only one VCF file is provided.
if len(population_vcf_filenames) == 1:
# The DefaultDict allows later code to query for any chromosome and still
# get the same reader. This is great for compatibility with multi-VCF below.
return collections.defaultdict(
lambda: vcf.VcfReader(population_vcf_filenames[0])
)
# If more than one VCF files are provided.
population_vcf_readers = DefaultDict(lambda: None)
for vcf_filename in population_vcf_filenames:
population_vcf_reader = vcf.VcfReader(vcf_filename, header=None)
# Get contig name from the first variant in a file.
for var in population_vcf_reader:
reference_name = var.reference_name
break
# There should not be more than one VCFs including variants in
# reference_name.
if population_vcf_readers.get(reference_name):
raise ValueError(
'Variants on %s are included in multiple VCFs' % reference_name
)
population_vcf_readers[reference_name] = population_vcf_reader
return population_vcf_readers
def add_allele_frequencies_to_candidates(
candidates, population_vcf_reader, ref_reader
):
"""Adds allele frequencies for candidate variants.
Args:
candidates: Iterable of DeepVariantCall protos that are the candidates we
want to process.
population_vcf_reader: A VcfReader object that reads the associated
population VCF file for candidates. None if the contig is not found.
ref_reader: A fasta.IndexedFastaReader.
Yields:
DeepVariantCall protos. The same set of input candidates, with field
allele_frequency filled.
"""
for candidate in candidates:
if population_vcf_reader:
dict_allele_frequency = find_matching_allele_frequency(
variant=candidate.variant,
population_vcf_reader=population_vcf_reader,
ref_reader=ref_reader,
)
else:
# Set ALT frequencies to 0 if population_vcf_reader is None.
dict_allele_frequency = {}
dict_allele_frequency[candidate.variant.reference_bases] = 1
for alt in candidate.variant.alternate_bases:
dict_allele_frequency[alt] = 0
yield deepvariant_pb2.DeepVariantCall(
variant=candidate.variant,
allele_support=candidate.allele_support,
allele_frequency=dict_allele_frequency,
)