[9b26b7]: / third_party / nucleus / util / vis_test.py

Download this file

505 lines (446 with data), 20.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# Copyright 2019 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Tests for third_party.nucleus.util.vis."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import glob
import os
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from third_party.nucleus.protos import variants_pb2
from third_party.nucleus.testing import test_utils
from third_party.nucleus.util import vis
# pylint: disable=g-direct-tensorflow-import
from tensorflow.core.example import example_pb2
from tensorflow.core.example import feature_pb2
def _bytes_feature(list_of_strings):
"""Returns a bytes_list from a list of string / byte."""
return feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=list_of_strings))
def _int_feature(list_of_ints):
"""Returns a int64_list from a list of int / bool."""
return feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=list_of_ints))
def _image_array(shape):
return np.random.randint(255, size=shape, dtype=np.uint8)
def _mock_example_with_image(shape):
arr = _image_array(shape)
feature = {
'image/encoded': _bytes_feature([arr.tobytes()]),
'image/shape': _int_feature(shape)
}
return arr, example_pb2.Example(
features=feature_pb2.Features(feature=feature))
def _mock_example_with_variant_and_alt_allele_indices(
encoded_indices=b'\n\x01\x00', alleles=('A', 'C')):
variant = test_utils.make_variant(chrom='X', alleles=alleles, start=10)
feature = {
'variant/encoded': _bytes_feature([variant.SerializeToString()]),
'alt_allele_indices/encoded': _bytes_feature([encoded_indices])
}
return example_pb2.Example(features=feature_pb2.Features(feature=feature))
def _mock_pileup_array_with_reads():
shape = (10, 15) # (height, width)
pileup = np.zeros(shape)
# Top 5 rows and all other non-read space is left as 0.
# Like an actual pileup with 4 reads, each 8 bases long.
pileup[5, 0:8] = 254
pileup[6, 1:9] = 254
pileup[7, 4:12] = 100 # One read with low value.
pileup[8, 6:14] = 254
pileup[8, 8:10] = 100 # Two bases of another read with low value.
return pileup
class VisTest(parameterized.TestCase):
def test_get_image_array_from_example(self):
shape = (3, 2, 4)
arr, example = _mock_example_with_image(shape)
decoded_image_array = vis.get_image_array_from_example(example)
self.assertTrue((arr == decoded_image_array).all())
@parameterized.parameters(((5, 4, 3),), ((10, 7, 5),))
def test_split_3d_array_into_channels(self, input_shape):
arr = np.random.random(input_shape)
output = vis.split_3d_array_into_channels(arr)
self.assertLen(output, input_shape[2])
for i in range(input_shape[2]):
self.assertEqual(output[i].shape, arr.shape[0:2])
self.assertTrue((output[i] == arr[:, :, i]).all())
def test_channels_from_example(self):
shape = (3, 2, 4)
arr, example = _mock_example_with_image(shape)
channels = vis.channels_from_example(example)
self.assertLen(channels, shape[2])
self.assertTrue((channels[0] == arr[:, :, 0]).all())
@parameterized.parameters(((4, 8), (4, 8, 3)), ((100, 20), (100, 20, 3)))
def test_convert_6_channels_to_rgb(self, input_shape, expected_output_shape):
channels = [np.random.random(input_shape) for _ in range(6)]
rgb = vis.convert_6_channels_to_rgb(channels)
self.assertEqual(rgb.shape, expected_output_shape)
@parameterized.parameters((None,), ('RGB',))
def test_draw_deepvariant_pileup_with_example_input(self, composite_type):
_, example = _mock_example_with_image((100, 10, 7))
# Test that it runs without error.
vis.draw_deepvariant_pileup(example=example, composite_type=composite_type)
@parameterized.parameters((None,), ('RGB',))
def test_draw_deepvariant_pileup_with_channels_input(self, composite_type):
channels = [_image_array((100, 221)) for _ in range(6)]
# Test that it runs without error.
vis.draw_deepvariant_pileup(
channels=channels, composite_type=composite_type)
@parameterized.parameters(
([[0.0, 1], [5, 10]], 0, 10, [[0, 25], [127, 255]]),
([[0.0, 0.1], [0.5, 1]], 0, 1, [[0, 25], [127, 255]]),
([[0.0, 0.1], [0.5, 1]], 0, 0.5, [[0, 51], [255, 255]]),
([[0.0, 0.1], [0.5, 1]], 0.5, 1, [[0, 0], [0, 255]]),
([[0.0, 0.1], [0.5, 1]], -1, 1, [[127, 140], [191, 255]]),
([[0.0, 0.1], [0.5, 1]], -1, 2, [[85, 93], [127, 170]]))
def test_scale_colors_for_png(self, arr, vmin, vmax, expected):
arr = np.array(arr)
scaled = vis.scale_colors_for_png(arr, vmin=vmin, vmax=vmax)
self.assertTrue((scaled == expected).all())
@parameterized.parameters(
((100, 200), 'L'),
((100, 200, 3), 'RGB'),
)
def test_autoscale_colors_for_png(self, shape, expected_image_mode):
arr = np.random.random(shape)
scaled, image_mode = vis.autoscale_colors_for_png(arr)
# Original array should be unchanged.
self.assertLess(np.max(arr), 1)
self.assertNotEqual(arr.dtype, np.uint8)
# Output values have been scaled up and the array's data type changed.
self.assertGreater(np.max(scaled), 1)
self.assertEqual(scaled.dtype, np.uint8)
self.assertEqual(image_mode, expected_image_mode)
@parameterized.parameters(
((100, 200), 'L'),
((10, 1), 'L'),
((100, 200, 3), 'RGB'),
((10, 1, 3), 'RGB'),
((100, 200, 6), None),
((100, 200, 3, 1), None),
((100), None),
)
def test_get_image_type_from_array(self, shape, expected):
arr = _image_array(shape)
if expected is not None:
self.assertEqual(vis._get_image_type_from_array(arr), expected)
else:
self.assertRaisesWithPredicateMatch(
ValueError, lambda x: str(x).index('dimensions') != -1,
vis.save_to_png, arr)
@parameterized.parameters(
((100, 200, 3), True),
((100, 200), True),
((100, 200, 6), False),
((100, 200, 3, 1), False),
((100), False),
)
def test_save_to_png(self, shape, should_succeed):
arr = _image_array(shape)
if should_succeed:
temp_dir = self.create_tempdir().full_path
output_path = os.path.join(temp_dir, 'test.png')
# check the file doesn't already exist before function runs
self.assertEmpty(glob.glob(output_path))
vis.save_to_png(arr, path=output_path)
self.assertLen(glob.glob(output_path), 1)
else:
self.assertRaisesWithPredicateMatch(
ValueError, lambda x: str(x).index('dimensions') != -1,
vis.save_to_png, arr)
@parameterized.parameters(
((100, 200, 3), True),
((100, 200), True),
((100, 200, 6), False),
((100, 200, 3, 1), False),
((100), False),
)
def test_array_to_png_works_with_floats(self, shape, should_succeed):
arr = np.random.random(shape)
if should_succeed:
temp_dir = self.create_tempdir().full_path
output_path = os.path.join(temp_dir, 'test.png')
# Check the file doesn't already exist before function runs.
self.assertEmpty(glob.glob(output_path))
vis.array_to_png(arr, path=output_path)
self.assertLen(glob.glob(output_path), 1)
else:
self.assertRaisesWithPredicateMatch(
ValueError, lambda x: str(x).index('dimensions') != -1,
vis.array_to_png, arr)
def test_variant_from_example(self):
example = _mock_example_with_variant_and_alt_allele_indices()
variant = vis.variant_from_example(example)
self.assertIsInstance(variant, variants_pb2.Variant)
@parameterized.parameters(
(b'\n\x01\x00', [0]),
(b'\n\x02\x00\x01', [0, 1]),
)
def test_alt_allele_indices_from_example(self, encoded_indices, expected):
example = _mock_example_with_variant_and_alt_allele_indices(encoded_indices)
indices = vis.alt_allele_indices_from_example(example)
self.assertEqual(indices, expected)
@parameterized.parameters(
('chr1', 100, 'G', 'chr1:100_G'),
('X', 0, 'GACGT', 'X:0_GACGT'),
)
def test_locus_id_from_variant(self, chrom, pos, ref, expected):
variant = test_utils.make_variant(
chrom=chrom, alleles=[ref, 'A'], start=pos)
locus_id = vis.locus_id_from_variant(variant)
self.assertEqual(locus_id, expected)
@parameterized.parameters(
(b'\n\x01\x00', ['A', 'G', 'GA', 'AG'], 'G'),
(b'\n\x02\x00\x01', ['C', 'CA', 'T', 'TA'], 'CA-T'),
(b'\n\x02\x01\x02', ['C', 'CA', 'T', 'TA'], 'T-TA'),
)
def test_alt_from_example(self, encoded_indices, alleles, expected):
example = _mock_example_with_variant_and_alt_allele_indices(
encoded_indices=encoded_indices, alleles=alleles)
alt = vis.alt_from_example(example)
self.assertEqual(alt, expected)
@parameterized.parameters(
(b'\n\x01\x00', ['A', 'G', 'GA', 'AG'], 'X:10_A_G'),
(b'\n\x02\x00\x01', ['C', 'CA', 'T', 'TA'], 'X:10_C_CA-T'),
(b'\n\x02\x01\x02', ['C', 'CA', 'T', 'TA'], 'X:10_C_T-TA'),
)
def test_locus_id_with_alt(self, encoded_indices, alleles, expected):
example = _mock_example_with_variant_and_alt_allele_indices(
encoded_indices=encoded_indices, alleles=alleles)
locus_id_with_alt = vis.locus_id_with_alt(example)
self.assertEqual(locus_id_with_alt, expected)
@parameterized.parameters(
([0], ['C'], 'C'),
([0, 1], ['C', 'TT'], 'C-TT'),
([3, 4], ['C', 'TT', 'T', 'G', 'A'], 'G-A'),
)
def test_alt_bases_from_indices(self, indices, alternate_bases, expected):
alt = vis.alt_bases_from_indices(indices, alternate_bases)
self.assertEqual(alt, expected)
@parameterized.parameters([(0), (1), (2)])
def test_label_from_example(self, truth_label):
feature = {'label': _int_feature([truth_label])}
example = example_pb2.Example(
features=feature_pb2.Features(feature=feature))
output = vis.label_from_example(example)
self.assertEqual(truth_label, output)
@parameterized.parameters([(0), (1), (2), (8), (9), (20)])
def test_deepvariant_channel_names(self, num_channels):
output = vis._deepvariant_channel_names(num_channels)
self.assertLen(output, num_channels)
def test_remove_ref_band(self):
pileup = _mock_pileup_array_with_reads()
bottom_part = vis.remove_ref_band(pileup)
self.assertEqual((pileup.shape[0] - 5, pileup.shape[1]),
bottom_part.shape,
msg='Checking output shape is correct.')
# Since the ref band is all zero, the sum should stay the same.
self.assertEqual(
np.sum(pileup),
np.sum(bottom_part),
msg='Checking bottom part of pileup is intact.')
test_pileup = np.zeros((100, 200))
self.assertEqual((95, 200), vis.remove_ref_band(test_pileup).shape)
too_small = np.zeros((4, 10)) + 254
with self.assertRaises(AssertionError):
vis.remove_ref_band(too_small)
def test_fraction_low_base_quality(self):
shape = (10, 15)
high_quality = [[], np.zeros(shape) + 254]
low_quality = [[], np.zeros(shape) + 100]
empty = [[], np.zeros(shape)]
golden_pileup = [[], _mock_pileup_array_with_reads()]
self.assertEqual(
0, vis.fraction_low_base_quality(high_quality), msg='All high quality')
self.assertEqual(
1, vis.fraction_low_base_quality(low_quality), msg='All low quality')
self.assertEqual(
0, vis.fraction_low_base_quality(empty), msg='Empty pileup, no reads')
self.assertEqual(
0.3125,
vis.fraction_low_base_quality(golden_pileup),
msg='Mixed high and low quality')
def test_fraction_reads_with_low_mapq(self):
shape = (10, 15)
filler_channels = [0] * 2
high_quality = filler_channels + [np.zeros(shape) + 254]
low_quality = filler_channels + [np.zeros(shape) + 100]
empty = filler_channels + [np.zeros(shape)]
golden_pileup = filler_channels + [_mock_pileup_array_with_reads()]
self.assertEqual(
0,
vis.fraction_reads_with_low_mapq(high_quality),
msg='All high quality')
self.assertEqual(
1, vis.fraction_reads_with_low_mapq(low_quality), msg='All low quality')
self.assertEqual(
0,
vis.fraction_reads_with_low_mapq(empty),
msg='Empty pileup, no reads')
self.assertEqual(
0.25,
vis.fraction_reads_with_low_mapq(golden_pileup),
msg='Mixed high and low quality')
def test_fraction_read_support_and_describer(self):
shape = (10, 15)
filler_channels = [0] * 4
all_support = filler_channels + [np.zeros(shape) + 254]
no_support = filler_channels + [np.zeros(shape) + 100]
empty = filler_channels + [np.zeros(shape)]
golden_pileup = filler_channels + [_mock_pileup_array_with_reads()]
self.assertEqual(1, vis.fraction_read_support(all_support))
self.assertEqual(vis.ReadSupport.ALL,
vis.describe_read_support(all_support))
self.assertEqual(0, vis.fraction_read_support(no_support))
self.assertEqual(vis.ReadSupport.LOW, vis.describe_read_support(no_support))
self.assertEqual(0, vis.fraction_read_support(empty))
self.assertEqual(vis.ReadSupport.LOW, vis.describe_read_support(empty))
self.assertEqual(0.75, vis.fraction_read_support(golden_pileup))
self.assertEqual(vis.ReadSupport.HALF,
vis.describe_read_support(golden_pileup))
@parameterized.parameters([
dict(k=12, n=24, expected_p=1.0),
dict(k=1, n=4, expected_p=0.625),
dict(k=3, n=4, expected_p=0.625),
dict(k=0, n=4, expected_p=0.125),
dict(k=4, n=4, expected_p=0.125),
dict(k=0, n=8, expected_p=0.0078125),
dict(k=8, n=8, expected_p=0.0078125)
])
def test_binomial_test(self, k, n, expected_p):
observed_p = vis.binomial_test(k=k, n=n)
self.assertEqual(expected_p, observed_p)
@parameterized.parameters([
dict(test_case='support = forward', expected=0.0625),
dict(test_case='support = reverse', expected=0.0625),
dict(test_case='support = 5+/5-', expected=1.0),
dict(test_case='support = 2+/2-', expected=1.0),
# From scipy.stats.binom_test(x=1, n=6):
dict(test_case='support = 1+/5-', expected=0.21875),
# For two-tailed, this must match the previous:
dict(test_case='support = 5+/1-', expected=0.21875)
])
def test_pvalue_for_strand_bias(self, test_case, expected):
shape = (15, 4)
strand = np.zeros(shape)
strand[5:10, :] = 240 # Forward.
strand[10:15, :] = 70 # Reverse.
read_support = np.zeros(shape)
if test_case == 'support = forward':
read_support[5:10, :] = 254 # Supporting.
read_support[10:15, :] = 100 # Anything not 254 means not supporting.
elif test_case == 'support = reverse':
read_support[5:10, :] = 100 # Not supporting.
read_support[10:15, :] = 254 # Supporting.
elif test_case == 'support = 5+/5-':
read_support[5:15, :] = 254 # All support: five forward, five reverse.
elif test_case == 'support = 2+/2-':
read_support[5:15, :] = 100 # Most not supporting.
read_support[8:12, :] = 254 # Two supporting from each strand.
elif test_case == 'support = 1+/5-':
read_support[5:15, :] = 100 # Most not supporting.
read_support[5:6, :] = 254 # One forward support.
read_support[10:15, :] = 254 # Five reverse support.
elif test_case == 'support = 5+/1-':
read_support[5:15, :] = 100 # Most not supporting.
read_support[5:10, :] = 254 # Five forward support.
read_support[10:11, :] = 254 # One reverse support.
else:
raise ValueError('test_case not recognized')
filler_channels = [0] * 3
channels = filler_channels + [strand, read_support]
self.assertEqual(expected, vis.pvalue_for_strand_bias(channels))
@parameterized.parameters([
dict(
test_case='nearby_variants',
expected_description=vis.Diff.NEARBY_VARIANTS,
expected_diff_fraction=0.0,
expected_nearby_variants=5),
dict(
test_case='few_diffs',
expected_description=vis.Diff.FEW_DIFFS,
expected_diff_fraction=0.0,
expected_nearby_variants=2),
dict(
test_case='many_diffs',
expected_description=vis.Diff.MANY_DIFFS,
expected_diff_fraction=0.1,
expected_nearby_variants=0),
dict(
test_case='empty',
expected_description=vis.Diff.FEW_DIFFS,
expected_diff_fraction=0.0,
expected_nearby_variants=0)
])
def test_analyze_diff_and_nearby_variants_and_describe_diff(
self, test_case, expected_description, expected_diff_fraction,
expected_nearby_variants):
shape = (15, 8)
diff_channel = np.zeros(shape) + 100
if test_case == 'nearby_variants':
# Five columns with homozygous variants:
diff_channel[5:, [0, 1, 2, 4, 6]] = 254
elif test_case == 'few_diffs':
# Less than five columns with homozygous variants:
diff_channel[5:, [2, 5]] = 254
elif test_case == 'many_diffs':
# One read full of differences:
diff_channel[5, 0:8] = 254
elif test_case == 'empty':
# No reads:
diff_channel = np.zeros(shape)
else:
raise ValueError('test_case not recognized')
filler_channels = [0] * 5
channels = filler_channels + [diff_channel]
diff_fraction, nearby_variants = vis.analyze_diff_and_nearby_variants(
channels)
self.assertEqual(diff_fraction, expected_diff_fraction)
self.assertEqual(nearby_variants, expected_nearby_variants)
self.assertEqual(expected_description, vis.describe_diff(channels))
def test_curate_pileup(self):
# Use the same pileup array for all of the channels.
# It has 4 reads, 2 of which are high values throughout the read, one read
# is all low values, and one read is high values except 2 lower-value bases.
channels = [_mock_pileup_array_with_reads() for _ in range(6)]
tags = vis.curate_pileup(channels)
# One read plus a few bases are low quality:
self.assertEqual(tags.base_quality, vis.BaseQuality.BAD)
# One fully low quality read out of four is enough to be "bad" mapq:
self.assertEqual(tags.mapping_quality, vis.MappingQuality.BAD)
# Not enough reads to get a p-value below 0.05 for strand bias:
self.assertEqual(tags.strand_bias, vis.StrandBias.GOOD)
# Many differences (large fraction of high values):
self.assertEqual(tags.diff_category, vis.Diff.MANY_DIFFS)
# One of four reads supporting is interpreted as roughly heterozygous:
self.assertEqual(tags.read_support, vis.ReadSupport.HALF)
if __name__ == '__main__':
absltest.main()