[9b26b7]: / third_party / nucleus / util / vis.py

Download this file

855 lines (676 with data), 30.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
# Copyright 2019 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Utility functions for visualization and inspection of pileup examples.
Visualization and inspection utility functions enable showing image-like array
data including those used in DeepVariant.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import enum
import math
from typing import List, NamedTuple, Tuple
from etils import epath
from IPython import display
import numpy as np
from PIL import Image
from PIL import ImageDraw
from third_party.nucleus.protos import variants_pb2
DEEPVARIANT_CHANNEL_NAMES = [
'read base', 'base quality', 'mapping quality', 'strand',
'read supports variant', 'base differs from ref', 'haplotype tag',
'alternate allele 1', 'alternate allele 2'
]
class Diff(enum.Enum):
FEW_DIFFS = 1
MANY_DIFFS = 2
NEARBY_VARIANTS = 3
class BaseQuality(enum.Enum):
GOOD = 1
BAD = 2
class MappingQuality(enum.Enum):
GOOD = 1
BAD = 2
class StrandBias(enum.Enum):
GOOD = 1
BIASED = 2
class ReadSupport(enum.Enum):
ALL = 1
HALF = 2
LOW = 3
PileupCuration = NamedTuple('PileupCuration',
[('base_quality', BaseQuality),
('mapping_quality', MappingQuality),
('strand_bias', StrandBias),
('diff_category', Diff),
('read_support', ReadSupport)])
def get_image_array_from_example(example):
"""Decode image/encoded and image/shape of an Example into a numpy array.
Parse image/encoded and image/shape features from a tensorflow Example and
decode the image into that shape.
Args:
example: a tensorflow Example containing features that include
"image/encoded" and "image/shape"
Returns:
numpy array of dtype np.uint8.
"""
features = example.features.feature
img = features['image/encoded'].bytes_list.value[0]
shape = features['image/shape'].int64_list.value[0:3]
return np.frombuffer(img, np.uint8).reshape(shape)
def split_3d_array_into_channels(arr):
"""Split 3D array into a list of 2D arrays.
e.g. given a numpy array of shape (100, 200, 6), return a list of 6 channels,
each with shape (100, 200).
Args:
arr: a 3D numpy array.
Returns:
list of 2D numpy arrays.
"""
return [arr[:, :, i] for i in range(arr.shape[-1])]
def channels_from_example(example):
"""Extract image from an Example and return the list of channels.
Args:
example: a tensorflow Example containing features that include
"image/encoded" and "image/shape"
Returns:
list of 2D numpy arrays, one for each channel.
"""
image = get_image_array_from_example(example)
return split_3d_array_into_channels(image)
def convert_6_channels_to_rgb(channels):
"""Convert 6-channel image from DeepVariant to RGB for quick visualization.
The 6 channels are: "read base", "base quality", "mapping quality", "strand",
"supports variant", "base != reference".
Args:
channels: a list of 6 numpy arrays.
Returns:
3D numpy array of 3 colors (Red, green, blue).
"""
base = channels[0]
# qual is the minimum of base quality and mapping quality at each position
# 254 is the max value for quality scores because the SAM specification has
# 255 reserved for unavailable values.
qual = np.minimum(channels[1], channels[2])
strand = channels[3]
# alpha is <supports variant> * <base != reference>
alpha = np.multiply(channels[4] / 254.0, channels[5] / 254.0)
return np.multiply(np.stack([base, qual, strand]),
alpha).astype(np.uint8).transpose([1, 2, 0])
def scale_colors_for_png(arr, vmin=0, vmax=255):
"""Scale an array to integers between 0 and 255 to prep it for a PNG image.
Args:
arr: numpy array. Input array made up of integers or floats.
vmin: number. Minimum data value to map to 0. Values below this will be
clamped to this value and therefore become 0.
vmax: number. Maximum data value to map to 255. Values above this will be
clamped to this value and therefore become 255.
Returns:
numpy array of dtype np.uint8 (integers between 0 and 255).
"""
if vmax == 0 or vmax <= vmin:
raise ValueError('vmin must be non-zero and higher than vmin.')
# Careful not to modify the original array
scaled = np.copy(arr)
# Snap numbers in the array falling outside the range into the range,
# otherwise they will produce artifacts due to byte overflow
scaled[scaled > vmax] = vmax
scaled[scaled < vmin] = vmin
# Scale the input into the range of vmin to vmax
if vmin != 0 or vmax != 255:
scaled = ((scaled - vmin) / (vmax - vmin)) * 255
return scaled.astype(np.uint8)
def _get_image_type_from_array(arr):
"""Find image type based on array dimensions.
Raises error on invalid image dimensions.
Args:
arr: numpy array. Input array.
Returns:
str. "RGB" or "L", meant for PIL.Image.fromarray.
"""
if len(arr.shape) == 3 and arr.shape[2] == 3:
# 8-bit x 3 colors
return 'RGB'
elif len(arr.shape) == 2:
# 8-bit, gray-scale
return 'L'
else:
raise ValueError(
'Input array must have either 2 dimensions or 3 dimensions where the '
'third dimension has 3 channels. i.e. arr.shape is (x,y) or (x,y,3). '
'Found shape {}.'.format(arr.shape))
def autoscale_colors_for_png(arr, vmin=None, vmax=None):
"""Adjust an array to prepare it for saving to an image.
Re-scale numbers in the input array to go from 0 to 255 to adapt them for a
PNG image.
Args:
arr: numpy array. Should be 2-dimensional or 3-dimensional where the third
dimension has 3 channels.
vmin: number (float or int). Minimum data value, which will correspond to
black in greyscale or lack of each color in RGB images. Default None takes
the minimum of the data from arr.
vmax: number (float or int). Maximum data value, which will correspond to
white in greyscale or full presence of each color in RGB images. Default
None takes the max of the data from arr.
Returns:
(modified numpy array, image_mode)
"""
image_mode = _get_image_type_from_array(arr)
if vmin is None:
vmin = np.min(arr)
if vmax is None:
vmax = np.max(arr)
# In cases where all elements are the same, fix the vmax so that even though
# the whole image will be black, the user can at least see the shape
if vmin == vmax:
vmax = vmin + 1
scaled = scale_colors_for_png(arr, vmin=vmin, vmax=vmax)
return scaled, image_mode
def add_header(img, labels, mark_midpoints=True, header_height=20):
"""Adds labels to the image, evenly distributed across the top.
This is primarily useful for showing the names of channels.
Args:
img: A PIL Image.
labels: list of strs. Labels for segments to write across the top.
mark_midpoints: bool. Whether to add a small vertical line marking the
center of each segment of the image.
header_height: int. Height of the header in pixels.
Returns:
A new PIL Image, taller than the original img and annotated.
"""
# Create a taller image to make space for a header at the top.
new_height = header_height + img.size[1]
new_width = img.size[0]
if img.mode == 'RGB':
placeholder_size = (new_height, new_width, 3)
else:
placeholder_size = (new_height, new_width)
placeholder = np.ones(placeholder_size, dtype=np.uint8) * 255
# Divide the image width into segments.
segment_width = img.size[0] / len(labels)
# Calculate midpoints for all segments.
midpoints = [int(segment_width * (i + 0.5)) for i in range(len(labels))]
if mark_midpoints:
# For each label, add a small line to mark the middle.
for x_position in midpoints:
placeholder[header_height - 5:header_height, x_position] = 0
# If image has an even width, it will need 2 pixels marked as the middle.
if segment_width % 2 == 0:
placeholder[header_height - 5:header_height, x_position + 1] = 0
bigger_img = Image.fromarray(placeholder, mode=img.mode)
# Place the original image inside the taller placeholder image.
bigger_img.paste(img, (0, header_height))
# Add a label for each segment.
draw = ImageDraw.Draw(bigger_img)
for i in range(len(labels)):
text = labels[i]
text_width = draw.textbbox((0, 0), text, anchor='lt')[2]
# xy refers to the left top corner of the text, so to center the text on
# the midpoint, subtract half the text width from the midpoint position.
x_position = int(midpoints[i] - text_width / 2)
draw.text(xy=(x_position, 0), text=text, fill='black')
return bigger_img
def save_to_png(arr,
path=None,
image_mode=None,
show=True,
labels=None,
scale=None):
"""Make a PNG and show it from a numpy array of dtype=np.uint8.
Args:
arr: numpy array. Input array to save.
path: str. File path at which to save the image. A .png prefix is added if
the path does not already have one. Leave empty to save at /tmp/tmp.png,
which is useful when only temporarily showing the image in a Colab
notebook.
image_mode: "RGB" or "L". Leave as default=None to choose based on image
dimensions.
show: bool. Whether to display the image using IPython (for notebooks).
labels: list of str. Labels to show across the top of the image.
scale: integer. Number of pixels wide and tall to show each cell in the
array. This sizes up the image while keeping exactly the same number of
pixels for every cell in the array, preserving resolution and preventing
any interpolation or overlapping of pixels. Default None adapts to the
size of the image to multiply it up until a limit of 500 pixels, a
convenient size for use in notebooks. If saving to a file for automated
processing, scale=1 is recommended to keep output files small and simple
while still retaining all the information content.
Returns:
None. Saves an image at path and optionally shows it with IPython.display.
"""
if image_mode is None:
image_mode = _get_image_type_from_array(arr)
img = Image.fromarray(arr, mode=image_mode)
if labels is not None:
img = add_header(img, labels)
if scale is None:
scale = max(1, int(500 / max(arr.shape)))
if scale != 1:
img = img.resize((img.size[0] * scale, img.size[1] * scale))
# Saving to a temporary file is needed even when showing in a notebook
if path is None:
path = '/tmp/tmp.png'
elif not path.endswith('.png'):
# Only PNG is supported because JPEG files are unnecessarily 3 times larger.
path = '{}.png'.format(path)
img.save(epath.Path(path).open('wb'), format=path.split('.')[-1])
# Show image (great for notebooks)
if show:
display.display(display.Image(path))
def array_to_png(arr,
path=None,
show=True,
vmin=None,
vmax=None,
scale=None,
labels=None):
"""Save an array as a PNG image with PIL and show it.
Args:
arr: numpy array. Should be 2-dimensional or 3-dimensional where the third
dimension has 3 channels.
path: str. Path for the image output. Default is /tmp/tmp.png for quickly
showing the image in a notebook.
show: bool. Whether to show the image using IPython utilities, only works in
notebooks.
vmin: number. Minimum data value, which will correspond to black in
greyscale or lack of each color in RGB images. Default None takes the
minimum of the data from arr.
vmax: number. Maximum data value, which will correspond to white in
greyscale or full presence of each color in RGB images. Default None takes
the max of the data from arr.
scale: integer. Number of pixels wide and tall to show each cell in the
array. This sizes up the image while keeping exactly the same number of
pixels for every cell in the array, preserving resolution and preventing
any interpolation or overlapping of pixels. Default None adapts to the
size of the image to multiply it up until a limit of 500 pixels, a
convenient size for use in notebooks. If saving to a file for automated
processing, scale=1 is recommended to keep output files small and simple
while still retaining all the information content.
labels: list of str. Labels to show across the top of the image.
Returns:
None. Saves an image at path and optionally shows it with IPython.display.
"""
scaled, image_mode = autoscale_colors_for_png(arr, vmin=vmin, vmax=vmax)
save_to_png(
scaled,
path=path,
show=show,
image_mode=image_mode,
labels=labels,
scale=scale)
def _deepvariant_channel_names(num_channels):
"""Get DeepVariant channel names for the given number of channels."""
# Add additional empty labels if there are more channels than expected.
filler_labels = [
'channel {}'.format(i + 1)
for i in range(len(DEEPVARIANT_CHANNEL_NAMES), num_channels)
]
labels = DEEPVARIANT_CHANNEL_NAMES + filler_labels
# Trim off any extra labels.
return labels[0:num_channels]
def draw_deepvariant_pileup(example=None,
channels=None,
composite_type=None,
annotated=True,
labels=None,
path=None,
show=True,
scale=None):
"""Quick utility for showing a pileup example as channels or RGB.
Args:
example: A tensorflow Example containing image/encoded and image/shape
features. Will be parsed through channels_from_example. Ignored if
channels are provided directly. Either example OR channels is required.
channels: list of 2D arrays containing the data to draw. Either example OR
channels is required.
composite_type: str or None. Method for combining channels. One of
[None,"RGB"].
annotated: bool. Whether to add channel labels and mark midpoints.
labels: list of str. Which labels to add to the image. If annotated=True,
use default channels labels for DeepVariant.
path: str. Output file path for saving as an image. If None, just show plot.
show: bool. Whether to display the image for ipython notebooks. Set to False
to prevent extra output when running in bulk.
scale: integer. Multiplier to enlarge the image. Default: None, which will
set it automatically for a human-readable size. Set to 1 for no scaling.
Returns:
None. Saves an image at path and optionally shows it with IPython.display.
"""
if example and not channels:
channels = channels_from_example(example)
elif not channels:
raise ValueError('Either example OR channels must be specified.')
if composite_type is None:
img_array = np.concatenate(channels, axis=1)
if annotated and labels is None:
labels = _deepvariant_channel_names(len(channels))
elif composite_type == 'RGB':
img_array = convert_6_channels_to_rgb(channels)
if annotated and labels is None:
labels = [''] # Creates one midpoint with no label.
else:
raise ValueError(
"Unrecognized composite_type: {}. Must be None or 'RGB'".format(
composite_type))
array_to_png(
img_array,
path=path,
show=show,
scale=scale,
labels=labels,
vmin=0,
vmax=254)
def variant_from_example(example):
"""Extract Variant object from the 'variant/encoded' feature of an Example.
Args:
example: a DeepVariant-style make_examples output example.
Returns:
A Nucleus Variant.
"""
features = example.features.feature
var_string = features['variant/encoded'].bytes_list.value[0]
return variants_pb2.Variant.FromString(var_string)
def locus_id_from_variant(variant):
"""Create a locus ID of form "chr:pos_ref" from a Variant object.
Args:
variant: a nucleus variant.
Returns:
str.
"""
return '{}:{}_{}'.format(variant.reference_name, variant.start,
variant.reference_bases)
def alt_allele_indices_from_example(example):
"""Extract indices of the particular alt allele(s) the example represents.
Args:
example: a DeepVariant make_examples output example.
Returns:
list of indices.
"""
features = example.features.feature
val = features['alt_allele_indices/encoded'].bytes_list.value[0]
# Extract the encoded proto into unsigned integers and convert to regular ints
mapped = [int(x) for x in np.frombuffer(val, dtype=np.uint8)]
# Format is [<field id + type>, <number of elements in array>, ...<array>].
# Extract the array only, leaving out the metadata.
return mapped[2:]
def alt_bases_from_indices(alt_allele_indices, alternate_bases):
"""Get alt allele bases based on their indices.
e.g. one alt allele: [0], ["C"] => "C"
or with two alt alleles: [0,2], ["C", "TT", "A"] => "C-A"
Args:
alt_allele_indices: list of integers. Indices of the alt alleles for a
particular example.
alternate_bases: list of strings. All alternate alleles for the variant.
Returns:
str. Alt allele(s) at the indices, joined by '-' if more than 1.
"""
alleles = [alternate_bases[i] for i in alt_allele_indices]
# Avoiding '/' to support use in file paths.
return '-'.join(alleles)
def alt_from_example(example):
"""Get alt allele(s) from a DeepVariant example.
Args:
example: a DeepVariant make_examples output example.
Returns:
str. The bases of the alt alleles, joined by a -.
"""
variant = variant_from_example(example)
indices = alt_allele_indices_from_example(example)
return alt_bases_from_indices(indices, variant.alternate_bases)
def locus_id_with_alt(example):
"""Get complete locus ID from a DeepVariant example.
Args:
example: a DeepVariant make_examples output example.
Returns:
str in the form "chr:pos_ref_alt.
"""
variant = variant_from_example(example)
locus_id = locus_id_from_variant(variant)
alt = alt_from_example(example)
return '{}_{}'.format(locus_id, alt)
def label_from_example(example):
"""Get the "label" from an example.
Args:
example: a DeepVariant make_examples output example.
Returns:
integer (0, 1, or 2 for regular DeepVariant examples) or None if the
example has no label.
"""
val = example.features.feature['label'].int64_list.value
if val:
return int(val[0])
else:
return None
def remove_ref_band(arr: np.ndarray,
num_top_rows_to_skip: int = 5) -> np.ndarray:
"""Removes the reference rows at the top of a pileup image array."""
assert len(arr.shape) == 2
assert arr.shape[0] > num_top_rows_to_skip
return arr[num_top_rows_to_skip:, :]
def fraction_low_base_quality(channels: List[np.ndarray],
threshold: int = 127) -> float:
"""Gets fraction of bases that have low base quality scores in a pileup.
Args:
channels: A list of channels of a DeepVariant pileup image. This only uses
channels[1], the base quality channel.
threshold: Bases qualities below this will be considered low quality. The
default is 127 because this is half of the max (254).
Returns:
The fraction of bases with base quality below the threshold.
"""
basequal_channel = remove_ref_band(channels[1])
non_zero_values = basequal_channel[basequal_channel > 0]
num_non_zero = non_zero_values.shape[0]
if num_non_zero == 0:
return 0.0
return sum((non_zero_values < threshold) * 1.0) / num_non_zero
def fraction_reads_with_low_mapq(channels: List[np.ndarray],
threshold: int = 127) -> float:
"""Gets fraction of reads that have low mapping quality scores in pileup.
Args:
channels: A list of channels of a DeepVariant pileup image. This only uses
channels[2], the mapping quality channel.
threshold: int. Default is 127 because this is half of the max (254).
Returns:
The fraction of bases with mapping quality below the threshold.
"""
mapq_channel = remove_ref_band(channels[2])
# Get max value of each row, aka each read.
max_row_values = np.amax(mapq_channel, axis=1)
non_zero_values = max_row_values[max_row_values > 0]
num_non_zero = non_zero_values.shape[0]
if num_non_zero == 0:
return 0.0
return sum((non_zero_values < threshold) * 1.0) / num_non_zero
def fraction_read_support(channels: List[np.ndarray]) -> float:
"""Gets fraction of reads that support the variant.
Args:
channels: A list of channels of a DeepVariant pileup image. This only uses
channels[4], the 'read supports variant' channel.
Returns:
Fraction of reads supporting the alternate allele(s), ranging from [0, 1].
"""
support_channel = remove_ref_band(channels[4])
max_row_values = np.amax(support_channel, axis=1)
non_zero_values = max_row_values[max_row_values > 0]
num_non_zero = non_zero_values.shape[0]
if num_non_zero == 0:
return 0.0
return sum(non_zero_values == 254) * 1.0 / num_non_zero
def describe_read_support(channels: List[np.ndarray]) -> ReadSupport:
"""Calculates read support and describes it categorically.
Computes read support as a fraction and returns a convenient descriptive term
according to the following thresholds: LOW is [0, 0.3], HALF is (0.3, 0.8],
and ALL is (0.8, 1].
Args:
channels: A list of channels of a DeepVariant pileup image. This only uses
channels[4], the 'read supports variant' channel.
Returns:
A ReadSupport value.
"""
fraction_support = fraction_read_support(channels)
if fraction_support > 0.8:
return ReadSupport.ALL
elif fraction_support > 0.3:
return ReadSupport.HALF
else:
return ReadSupport.LOW
def binomial_test(k: int, n: int) -> float:
"""Calculates a two-tailed binomial test with p=0.5, without scipy.
Since the expected probability is 0.5, it simplifies a few things:
1) (0.5**x)*(0.5**(n-x)) = (0.5**n)
2) A two-tailed test is simply doubling when p = 0.5.
Scipy is much larger than Nucleus, so this avoids adding it as a dependency.
Args:
k: Number of "successes", in this case, the number of supporting reads.
n: Number of "trials", in this case, the total number of reads.
Returns:
The p-value for the binomial test.
"""
if not k <= n:
raise ValueError('k must be <= n')
if k == n / 2:
return 1.0
sum_of_ps = 0
# With p=0.5, the distribution is symmetric, allowing this simplification:
k = min(k, n - k)
# Add up all the exact probabilities for each scenario more extreme than k.
for x in range(0, k + 1):
# After python 3.8, the following line can be replaced using math.comb.
n_choose_x = math.factorial(n) / math.factorial(x) / math.factorial(n - x)
p_for_i = n_choose_x * (0.5**n)
sum_of_ps += p_for_i
return sum_of_ps * 2 # Doubling because it's a two-tailed test.
def pvalue_for_strand_bias(channels: List[np.ndarray]) -> float:
"""Calculates a rough p-value for strand bias in pileup.
Using the strand and read-supports-variant channels, compares the numbers of
forward and reverse reads among the supporting reads and returns a p-value
using a two-tailed binomial test.
Args:
channels: List of DeepVariant channels. Uses channels[3] (strand) and
channels[4] (read support).
Returns:
P-value for whether the supporting reads show strand bias.
"""
strand = remove_ref_band(channels[3])
forward_strand = strand == 240
reverse_strand = strand == 70
read_support = remove_ref_band(channels[4])
read_support = (read_support == 254) * 1.0
forward_support = read_support * forward_strand
reverse_support = read_support * reverse_strand
forward_supporting = int(sum(np.amax(forward_support, axis=1)))
reverse_supporting = int(sum(np.amax(reverse_support, axis=1)))
return binomial_test(
k=forward_supporting, n=forward_supporting + reverse_supporting)
def analyze_diff_and_nearby_variants(
channels: List[np.ndarray]) -> Tuple[float, int]:
"""Analyzes which differences belong to nearby variants and which do not.
This attempts to identify putative nearby variants from the pileup image
alone, and then excludes these columns of the pileup to calculate the
remaining fraction of differences that may be attributed to sequencing errors.
Args:
channels: A list of channels of a DeepVariant pileup image. This only uses
channels[5], the 'differs from ref' channel.
Returns:
Two outputs: diff fraction, number of likely nearby variants.
"""
diff_channel = remove_ref_band(channels[5])
# Count the number of diff pixels per column.
column_diffs = np.sum(diff_channel == 254, axis=0)
# Count number of differences per base position.
column_read_count = np.sum(diff_channel != 0, axis=0)
# Divide to get the fraction of reads showing a diff at each base (column).
# Adding 1 here avoids dividing by zero (exact fraction here is not vital).
fraction = column_diffs * 1.0 / (column_read_count + 1)
# Columns with more differences could be variants.
nearby_variant_columns = (fraction > 0.1) * (column_diffs > 4) * 1
num_potential_nearby_variants = sum(nearby_variant_columns)
# Exclude potential variants when calculating error fraction.
nearby_variant_mask = np.array([nearby_variant_columns] *
diff_channel.shape[0])
mask_to_remove_nearby_variants = 1 - nearby_variant_mask
non_variant_diffs = (diff_channel == 254) * mask_to_remove_nearby_variants
# Calculate differences as fraction of the total number of read bases.
total_read_area = np.sum((diff_channel != 0))
diff_fraction = 0 if total_read_area == 0 else np.sum(
non_variant_diffs) / total_read_area
return diff_fraction, num_potential_nearby_variants
def describe_diff(channels: List[np.ndarray],
diff_fraction_threshold: float = 0.01) -> Diff:
"""Describes a pileup image by its diff channel, including nearby variants.
Returns Diff.MANY_DIFFS if the fraction of differences outside potential
nearby variants is above the diff_fraction_threshold, which is usually
indicative of sequencing errors. Otherwise return Diff.NEARBY_VARIANTS if
there are five or more of these, or Diff.FEW_DIFFS if neither of these
special cases apply.
Args:
channels: A list of channels of a DeepVariant pileup image. This only uses
channels[5], the 'differs from ref' channel.
diff_fraction_threshold: Fraction of total bases of all reads that can
differ, above which the pileup will be designated as 'many_diffs'.
Differences that appear due to nearby variants (neater columns) do not
count towards this threshold. The default is set by visual curation of
Illumina reads, so it may be necessary to increase this for higher-error
sequencing types.
Returns:
One Diff value.
"""
diff_fraction, nearby_variants = analyze_diff_and_nearby_variants(channels)
# Thresholds were chosen by visual experimentation, i.e. human curation.
if diff_fraction > diff_fraction_threshold:
return Diff.MANY_DIFFS
elif nearby_variants >= 5:
return Diff.NEARBY_VARIANTS
else:
return Diff.FEW_DIFFS
def curate_pileup(channels: List[np.ndarray]) -> PileupCuration:
"""Runs all automated curation functions and outputs categorical tags.
The following values are possible for each descriptor:
* base_quality: GOOD (>5% low quality) or BAD.
* mapping_quality: GOOD (<5% low quality) or BAD.
* strand_biased: BIASED (p-value < 0.05) or GOOD.
* diff_category: MANY_DIFFS (>1% differences), NEARBY_VARIANTS (5+ variants),
or FEW_DIFFS otherwise.
* read_support: LOW (<=30%), HALF (30-80%), ALL (>80%).
The thresholds were all set by trying to match human curation.
Args:
channels: A list of DeepVariant channels.
Returns:
A PileupCuration NamedTuple.
"""
return PileupCuration(
base_quality=BaseQuality.GOOD
if fraction_low_base_quality(channels) < 0.05 else BaseQuality.BAD,
mapping_quality=MappingQuality.GOOD
if fraction_reads_with_low_mapq(channels) < 0.05 else MappingQuality.BAD,
strand_bias=StrandBias.BIASED
if pvalue_for_strand_bias(channels) < 0.05 else StrandBias.GOOD,
diff_category=describe_diff(channels),
read_support=describe_read_support(channels))