[9b26b7]: / deepvariant / variant_calling.cc

Download this file

631 lines (578 with data), 26.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
* Copyright 2017 Google LLC.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "deepvariant/variant_calling.h"
#include <algorithm>
#include <functional>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <string>
#include <vector>
#include "deepvariant/allelecounter.h"
#include "deepvariant/protos/deepvariant.pb.h"
#include "deepvariant/utils.h"
#include "absl/container/btree_map.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "third_party/nucleus/io/vcf_reader.h"
#include "third_party/nucleus/protos/variants.pb.h"
#include "third_party/nucleus/util/math.h"
#include "third_party/nucleus/util/utils.h"
#include "third_party/nucleus/core/statusor.h"
#include "absl/log/log.h"
namespace learning {
namespace genomics {
namespace deepvariant {
namespace vcf_candidate_importer {
using nucleus::genomics::v1::Range;
using nucleus::genomics::v1::Variant;
using nucleus::genomics::v1::VariantCall;
using tensorflow::string;
// Declared in .h.
const char* const kGVCFAltAllele = "<*>";
const char* const kSupportingUncalledAllele = "UNCALLED_ALLELE";
const char* const kDPFormatField = "DP";
const char* const kADFormatField = "AD";
const char* const kVAFFormatField = "VAF";
// The VCF/Variant allele string to use when you don't have any alt alleles.
const char* const kNoAltAllele = ".";
namespace {
template <class T>
std::vector<T> AsVector(const google::protobuf::RepeatedPtrField<T>& container) {
return std::vector<T>(container.begin(), container.end());
}
// Adds a single VariantCall with sample_name, genotypes, and gq (bound to the
// "GQ" key of info with a numerical value of gq, if provided) to variant.
void AddGenotypes(const string& sample_name, const std::vector<int>& genotypes,
Variant* variant) {
CHECK(variant != nullptr);
VariantCall* call = variant->add_calls();
call->set_call_set_name(sample_name);
for (const auto genotype : genotypes) {
call->add_genotype(genotype);
}
}
void FillVariant(const string& reference_name, int variant_start,
const string& ref_bases, const string& sample_name,
const std::vector<std::string>& alternate_bases,
Variant* variant) {
variant->set_reference_name(reference_name);
variant->set_start(variant_start);
variant->set_reference_bases(ref_bases);
variant->set_end(variant->start() + ref_bases.size());
AddGenotypes(sample_name, {-1, -1}, variant);
for (const string& alt : alternate_bases) {
variant->add_alternate_bases(alt);
}
}
void MakeVariantConsistentWithRefAndAlts(const string& refbases,
const std::vector<Allele>& alt_alleles,
Variant* variant_to_fix) {
if (variant_to_fix->reference_bases() == refbases) {
// No fix needed if the reference bases are identical.
return;
}
QCHECK_NE(variant_to_fix->reference_bases().length(), refbases.length())
<< "Proposed variant has incorrect ref bases: "
<< "Problematic variant=" << variant_to_fix->DebugString();
if (variant_to_fix->reference_bases().length() < refbases.length()) {
QCHECK(absl::StartsWith(refbases, variant_to_fix->reference_bases()))
<< "Proposed variant has incorrect ref bases: "
<< "Problematic variant=" << variant_to_fix->DebugString();
string suffix = refbases.substr(variant_to_fix->reference_bases().length(),
refbases.length());
variant_to_fix->set_reference_bases(
absl::StrCat(variant_to_fix->reference_bases(), suffix));
for (int i = 0; i < variant_to_fix->alternate_bases_size(); ++i) {
variant_to_fix->set_alternate_bases(
i, absl::StrCat(variant_to_fix->alternate_bases(i), suffix));
}
variant_to_fix->set_end(variant_to_fix->end() + suffix.length());
}
}
// Assumption: `short_str` is a prefix of `long_str`.
// Return the suffix on long_str.
string GetSuffixFromTwoAlleles(const string& short_str,
const string& long_str) {
QCHECK(absl::StartsWith(long_str, short_str))
<< short_str << " has to be a prefix of " << long_str;
return long_str.substr(short_str.length(), long_str.length());
}
} // namespace
////////////////////////////////////////////////////////////////////////////////
//
// Code for creating non-reference Variant calls.
//
////////////////////////////////////////////////////////////////////////////////
// Get the 'deletion' size of allele, which is the length of the
// bases if allele is a deletion, or -1 otherwise. A helper
// function for CalcRefBases.
int DeletionSize(const Allele& allele) {
return allele.type() == AlleleType::DELETION ? allele.bases().length() : -1;
}
// Get the bases to use as the reference bases in a Variant proto.
//
// The reference bases in a variant proto represent the longest substitution
// of bases on the reference genome needed to describe a substitution by
// one of alt_alleles in a sample. What this means is that if alt_alleles
// doesn't include any deletions, this is simply the reference bases of our
// AlleleCount. But if one of the alt_alleles is a deletion, we need to
// use those bases as our reference. And if there are multiple deletions
// at a site, we need to use the longest deletion allele.
string CalcRefBases(const string& ref_bases,
const std::vector<Allele>& alt_alleles) {
if (alt_alleles.empty()) {
// We don't have any alternate alleles, so used the provided ref_bases.
return ref_bases;
}
const auto max_elt =
std::max_element(alt_alleles.cbegin(), alt_alleles.cend(),
[](const Allele& allele1, const Allele& allele2) {
return DeletionSize(allele1) < DeletionSize(allele2);
});
if (max_elt->type() != AlleleType::DELETION) {
return ref_bases;
} else {
// Deletion alleles may have an anchor base that is the reference or some
// other base, but a Variant must have a reference sequence that starts with
// the reference base. The index 1 skips the first base of the deletion,
// which is the anchor base of the deletion.
CHECK(max_elt->bases().size() > 1)
<< "Saw invalid deletion allele with too few bases"
<< max_elt->ShortDebugString();
return absl::StrCat(ref_bases, max_elt->bases().substr(1));
}
}
// Constructs an alt allele from the prefix bases and the reference bases.
//
// This function helps create alt alleles for a variant proto. The complex logic
// here is to deal with the fact that the variant_ref bases aren't the simple
// single reference base context that the Allele objects are in but rather the
// actual reference bases of the variant, which could include a long series of
// bases if there's a deletion allele.
//
// This function takes a prefix of bases and concatenates those bases onto the
// appropriate substring of variant_ref. The substring starts at the from
// argument and runs to the end of variant_ref string, provided from isn't
// beyond the end of variant_ref.
//
// Suppose that we have variant_ref == "ACGT" due to a deletion, and our alleles
// are "C" [SNP] and "ATTT" [INSERTION] along with our "ACGT" [DELETION]. Each
// allele comes into this function with the following arguments:
//
// "C" [SNP] : prefix="C" and from=1
// "ATTT" [INS] : prefix="ATTT" and from=1
// "ACGT" [DEL] : prefix="A" (original ref base) and from=4
//
// This function will produce appropriate alleles that correct for the new
// reference bases due to the deletion as:
//
// "C" [SNP] => "C" + "CGT" => "CCGT", putting back deleted bases
// "ATTT" [INS] => "ATTT" + "CGT" => "ATTTCGT", putting back deleted bases
// "ACGT" [DEL] => "A" + "" (from >= "ACGT".length()) => "A"
//
string MakeAltAllele(const string& prefix, const string& variant_ref,
const uint32_t from) {
const auto postfix =
from >= variant_ref.length() ? "" : variant_ref.substr(from);
return absl::StrCat(prefix, postfix);
}
// Is allele a good alternative allele for a Variant proto?
//
// A good alt allele is one that is a substitution, insertion, or deletion,
// and satisfies our min count and min fraction requirements.
bool VariantCaller::IsGoodAltAllele(const Allele& allele,
const int total_count) const {
return allele.type() != AlleleType::REFERENCE &&
allele.type() != AlleleType::SOFT_CLIP &&
allele.count() >= min_count(allele) &&
(1.0 * allele.count()) / total_count >= min_fraction(allele);
}
// Select the subset of GoodAltAlleles from the alleles of allele_count.
//
// Returns the vector of allele objects from allele_count that satisfy
// IsGoodAltAllele().
std::vector<Allele> VariantCaller::SelectAltAlleles(
const AlleleCount& allele_count) const {
const std::vector<Allele> alleles = SumAlleleCounts(allele_count);
const int total_count = TotalAlleleCounts(allele_count);
std::vector<Allele> alt_alleles;
for (const auto& allele : alleles) {
if (IsGoodAltAllele(allele, total_count)) {
alt_alleles.push_back(allele);
}
}
return alt_alleles;
}
AlleleMap BuildAlleleMap(const AlleleCount& allele_count,
const std::vector<Allele>& alt_alleles,
const string& ref_bases) {
AlleleMap allele_map;
// Compute the alt alleles, recording the mapping from each Allele to its
// corresponding allele in the Variant format.
for (const auto& alt_allele : alt_alleles) {
const string& alt_bases = alt_allele.bases();
switch (alt_allele.type()) {
case AlleleType::SUBSTITUTION:
case AlleleType::INSERTION:
allele_map[alt_allele] = MakeAltAllele(alt_bases, ref_bases, 1);
break;
case AlleleType::DELETION: {
// The prefix base for a deletion should be the first base of the
// deletion allele, which can be reference but might not be.
CHECK(alt_bases.size() > 1)
<< "Saw invalid deletion allele with too few bases"
<< alt_allele.ShortDebugString();
// The prefix base here is the anchor base of the deletion allele, which
// is the first base of the alt_bases string.
allele_map[alt_allele] =
MakeAltAllele(alt_bases.substr(0, 1), ref_bases, alt_bases.size());
break;
}
case AlleleType::SOFT_CLIP:
// We don't want to add SOFT_CLIP alleles to our map.
break;
default:
// this includes AlleleType::REFERENCE which should have been removed
LOG(FATAL) << "Unexpected alt allele " << alt_allele.DebugString();
}
}
return allele_map;
}
// Adds the DP, AD, and VAF VCF fields to the first VariantCall of Variant.
// DP: the total number of observed reads at the site.
// AD: the number of reads supporting each of our ref and alt alleles.
// VAF: the allele fraction of the variants (only including alt alleles).
// These are calculated from the provided allele_count information. The
// allele_map is needed to map between the Variant reference and alternate_bases
// and the Alleles used in allele_count.
void AddReadDepths(const AlleleCount& allele_count, const AlleleMap& allele_map,
const string& allele_map_refbases, Variant* variant) {
// Set the DP to the total good reads seen at this position.
VariantCall* call = variant->mutable_calls(0);
nucleus::SetInfoField(kDPFormatField, TotalAlleleCounts(allele_count), call);
if (variant->alternate_bases_size() == 1 &&
(variant->alternate_bases(0) == kNoAltAllele ||
variant->alternate_bases(0) == kGVCFAltAllele)) {
// Variant has no alts or is a a gVCF record so only DP is meaningful.
return;
} else {
int dp = TotalAlleleCounts(allele_count);
// Build up AD and VAF.
std::vector<int> ad;
std::vector<double> vaf;
ad.push_back(allele_count.ref_supporting_read_count());
absl::btree_map<std::string, const Allele*, std::less<>> alt_to_alleles;
for (const auto& entry : allele_map) {
const string key = SimplifyRefAlt(allele_map_refbases, entry.second);
alt_to_alleles[key] = &entry.first;
}
CHECK(alt_to_alleles.size() == allele_map.size())
<< "Non-unique alternative alleles!";
for (const string& alt : variant->alternate_bases()) {
const string simplified_ref_alt =
SimplifyRefAlt(variant->reference_bases(), alt);
int count_of_allele = 0;
auto found = alt_to_alleles.find(simplified_ref_alt);
if (found != alt_to_alleles.end()) {
count_of_allele = (*found->second).count();
}
double this_vaf = 0.0;
if (dp > 0) {
this_vaf = 1.0 * count_of_allele / dp;
}
ad.push_back(count_of_allele);
vaf.push_back(this_vaf);
}
nucleus::SetInfoField(kADFormatField, ad, call);
nucleus::SetInfoField(kVAFFormatField, vaf, call);
}
}
// Returns true if the current site should be emited, even if it's a reference
// site. This function is used to return reference site samples if the
// member variable fraction_reference_sites_to_emit >= 0.0 by pulling draws
// from a random number and returning true if the number <= the threshold.
bool VariantCaller::KeepReferenceSite() const {
return options_.fraction_reference_sites_to_emit() > 0.0 && sampler_.Keep();
}
std::vector<DeepVariantCall> VariantCaller::CallsFromAlleleCounter(
const AlleleCounter& allele_counter) const {
return CallsFromAlleleCounts(allele_counter.Counts());
}
std::vector<DeepVariantCall> VariantCaller::CallsFromAlleleCounts(
const std::vector<AlleleCount>& allele_counts) const {
std::vector<DeepVariantCall> variants;
for (const AlleleCount& allele_count : allele_counts) {
std::optional<DeepVariantCall> call = CallVariant(allele_count);
if (call) {
variants.push_back(*call);
}
}
return variants;
}
bool is_uncalled_genotype(const Variant& variant) {
if (variant.calls_size() >= 1) {
VariantCall call = variant.calls().Get(0);
if (call.genotype().size() >= 2) {
return call.genotype().Get(0) == -1 && call.genotype().Get(1) == -1;
}
}
return false;
}
std::vector<DeepVariantCall> VariantCaller::CallsFromVcf(
const std::vector<AlleleCount>& allele_counts,
const Range& range,
nucleus::VcfReader* vcf_reader_ptr) const {
std::vector<Variant> variants_in_region;
nucleus::StatusOr<std::shared_ptr<nucleus::VariantIterable>> status =
vcf_reader_ptr->Query(range);
if (status.ok()) {
std::shared_ptr<nucleus::VariantIterable> variants = status.ValueOrDie();
bool warn_missing = false;
for (const auto& v : variants) {
const Variant* variant = v.ValueOrDie();
// This ensures we only keep variants that start in this region.
// By default, vcf_reader->Query() returns all variants that overlap a
// region, which can incorrectly cause the same variant to be processed
// multiple times.
if (variant->start() >= range.start()) {
if (options_.skip_uncalled_genotypes() &&
is_uncalled_genotype(*variant)) {
if (!warn_missing) {
LOG(WARNING) << "Uncalled genotypes (./.) present in VCF. These "
"are skipped.";
warn_missing = true;
}
continue;
}
Variant clean_variant;
FillVariant(variant->reference_name(), variant->start(),
variant->reference_bases(), options_.sample_name(),
AsVector<std::string>(variant->alternate_bases()),
&clean_variant);
variants_in_region.push_back(clean_variant);
}
}
} else if (status.error_message() == "Cannot query without an index") {
LOG(FATAL) << "Error in VariantCaller::CallsFromVcf: "
<< status.error_message();
} else {
LOG(WARNING)
<< nucleus::MakeIntervalStr(range)
<< " cannot be found in proposed VCF header. Skip this region.";
}
return CallsFromVariantsInRegion(allele_counts, variants_in_region);
}
std::vector<int> VariantCaller::CallPositionsFromVcf(
const std::vector<AlleleCount>& allele_counts, const Range& range,
nucleus::VcfReader* vcf_reader_ptr) const {
std::vector<Variant> variants_in_region;
std::vector<int> positions;
nucleus::StatusOr<std::shared_ptr<nucleus::VariantIterable>> status =
vcf_reader_ptr->Query(range);
if (status.ok()) {
std::shared_ptr<nucleus::VariantIterable> variants = status.ValueOrDie();
bool warn_missing = false;
for (const auto& v : variants) {
const Variant* variant = v.ValueOrDie();
// This ensures we only keep variants that start in this region.
// By default, vcf_reader->Query() returns all variants that overlap a
// region, which can incorrectly cause the same variant to be processed
// multiple times.
if (variant->start() >= range.start()) {
if (options_.skip_uncalled_genotypes() &&
is_uncalled_genotype(*variant)) {
if (!warn_missing) {
LOG(WARNING) << "Uncalled genotypes (./.) present in VCF. These "
"are skipped.";
warn_missing = true;
}
continue;
}
// This is a good variant, save the position.
positions.push_back(variant->start());
}
}
} else if (status.error_message() == "Cannot query without an index") {
LOG(FATAL) << "Error in VariantCaller::CallsFromVcf: "
<< status.error_message();
} else {
LOG(WARNING)
<< nucleus::MakeIntervalStr(range)
<< " cannot be found in proposed VCF header. Skip this region.";
}
return positions;
}
std::vector<DeepVariantCall> VariantCaller::CallsFromVcf(
const AlleleCounter& allele_counter,
nucleus::VcfReader* vcf_reader_ptr) const {
return CallsFromVcf(allele_counter.Counts(), allele_counter.Interval(),
vcf_reader_ptr);
}
std::vector<int> VariantCaller::CallPositionsFromVcf(
const AlleleCounter& allele_counter,
nucleus::VcfReader* vcf_reader_ptr) const {
return CallPositionsFromVcf(allele_counter.Counts(),
allele_counter.Interval(),
vcf_reader_ptr);
}
std::vector<DeepVariantCall> VariantCaller::CallsFromVariantsInRegion(
const std::vector<AlleleCount>& allele_counts,
const std::vector<Variant>& variants_in_region) const {
std::vector<DeepVariantCall> calls;
// For each variant in the region, loop through AlleleCounts to find a match
// to the variant position. At each match, add the supporting reads.
for (const auto& v : variants_in_region) {
std::optional<DeepVariantCall> call = ComputeVariant(v, allele_counts);
if (call) {
calls.push_back(*call);
}
}
return calls;
}
std::optional<DeepVariantCall> VariantCaller::ComputeVariant(
const Variant& variant,
const std::vector<AlleleCount>& allele_counts) const {
DeepVariantCall call;
*call.mutable_variant() = variant;
Variant* m_variant = call.mutable_variant();
AlleleCount allele_count_match;
int idx = AlleleIndex(allele_counts, variant.start());
if (idx != -1) {
allele_count_match = allele_counts[idx];
if (!nucleus::AreCanonicalBases(allele_count_match.ref_base())) {
// We don't emit calls at any site in the genome that isn't one of the
// canonical DNA bases (one of A, C, G, or T).
return std::nullopt;
}
}
// If idx=-1 and no allele count matches we proceed with
// an empty allele_count_match object which is used to help return
// a missing genotype with no observed evidence.
std::vector<Allele> alt_alleles = SelectAltAlleles(allele_count_match);
string refbases = CalcRefBases(allele_count_match.ref_base(), alt_alleles);
MakeVariantConsistentWithRefAndAlts(refbases, alt_alleles, m_variant);
// Compute the map from read alleles to the alleles we'll use in our Variant.
// Add the alternate alleles from our allele_map to the variant.
const AlleleMap allele_map =
BuildAlleleMap(allele_count_match, alt_alleles, refbases);
AddReadDepths(allele_count_match, allele_map, refbases, m_variant);
AddSupportingReads(allele_count_match.read_alleles(), allele_map, refbases,
&call);
return std::make_optional(call);
}
std::optional<DeepVariantCall> VariantCaller::CallVariant(
const AlleleCount& allele_count) const {
if (!nucleus::AreCanonicalBases(allele_count.ref_base())) {
// We don't emit calls at any site in the genome that isn't one of the
// canonical DNA bases (one of A, C, G, or T).
return std::nullopt;
}
std::vector<Allele> alt_alleles = SelectAltAlleles(allele_count);
if (alt_alleles.empty() && !KeepReferenceSite()) {
return std::nullopt;
}
const string refbases = CalcRefBases(allele_count.ref_base(), alt_alleles);
std::vector<std::string> alternate_bases;
// Compute the map from read alleles to the alleles we'll use in our Variant.
// Add the alternate alleles from our allele_map to the variant.
const AlleleMap allele_map =
BuildAlleleMap(allele_count, alt_alleles, refbases);
for (const auto& elt : allele_map) {
alternate_bases.push_back(elt.second);
}
// If we don't have any alt_alleles, we are generating a reference site so
// add in the kNoAltAllele.
if (alt_alleles.empty()) alternate_bases.push_back(kNoAltAllele);
std::sort(alternate_bases.begin(), alternate_bases.end());
DeepVariantCall call;
Variant* variant = call.mutable_variant();
string sample_name = options_.sample_name();
if (variant->calls_size() > 0 && !variant->calls(0).call_set_name().empty()) {
sample_name = variant->calls(0).call_set_name();
}
// Creates a non-reference Variant proto based on the information in
// allele_count and alt_alleles. This variant starts at the position of
// allele_count with the same reference_name. The reference_bases are
// calculated based on the alt_alleles, which are also set appropriately for
// the variant. For convenience, the alt_alleles are sorted.
FillVariant(allele_count.position().reference_name(),
allele_count.position().position(), refbases, sample_name,
alternate_bases, variant);
AddReadDepths(allele_count, allele_map, refbases, variant);
AddSupportingReads(allele_count.read_alleles(), allele_map, refbases, &call);
return std::make_optional(call);
}
void VariantCaller::AddSupportingReads(
const ::google::protobuf::Map<std::string, Allele>& read_alleles,
const AlleleMap& allele_map, const string& refbases,
DeepVariantCall* call) const {
string suffix = "";
if (call->variant().reference_bases().length() > refbases.length()) {
suffix =
GetSuffixFromTwoAlleles(refbases, call->variant().reference_bases());
}
// Iterate over each read in the allele_count, and add its name to the
// supporting reads of for the Variant allele it supports.
const string unknown_allele = kSupportingUncalledAllele;
for (const auto& read_name_allele : read_alleles) {
const string& read_name = read_name_allele.first;
const Allele& allele = read_name_allele.second;
// Skip reference supporting reads, as they aren't included in the
// supporting reads for alternate alleles.
if (allele.type() != AlleleType::REFERENCE) {
auto it = allele_map.find(allele);
const string supported_allele = it == allele_map.end()
? unknown_allele
: absl::StrCat(it->second, suffix);
DeepVariantCall_SupportingReads& supports =
(*call->mutable_allele_support())[supported_allele];
supports.add_read_names(read_name);
DeepVariantCall_SupportingReadsExt& support_infos =
(*call->mutable_allele_support_ext())[supported_allele];
DeepVariantCall_ReadSupport* read_info = support_infos.add_read_infos();
read_info->set_read_name(read_name);
read_info->set_is_low_quality(allele.is_low_quality());
} else if (options_.track_ref_reads()) {
call->add_ref_support(read_name);
DeepVariantCall_SupportingReadsExt& support_infos =
(*call->mutable_ref_support_ext());
DeepVariantCall_ReadSupport* read_info = support_infos.add_read_infos();
read_info->set_read_name(read_name);
read_info->set_is_low_quality(allele.is_low_quality());
}
}
}
} // namespace vcf_candidate_importer
} // namespace deepvariant
} // namespace genomics
} // namespace learning